Abstract
In view of the cold working environment and road diseases of asphalt pavement in the heavy freezing area of Inner Mongolia, a control index of pavement structure based on crack resistance was proposed. The calculation models of the newly built basalt fiber asphalt pavement structure and the pavement after cracks were established by using Ansys finite element software. The mechanical parameters, thermophysical parameters, and other parameters of the basalt fiber asphalt pavement were determined through laboratory tests, and the crack resistance indexes under the coupling action of low temperature and load were calculated, respectively. The fatigue life of basalt fiber asphalt mixture was tested to verify the correctness of the finite element simulation results. The results show that under the coupling effect of low temperature and load, the crack resistance indexes of the newly built basalt fiber asphalt pavement at the crack point are improved. The influence of different load positions on different crack propagation periods of cracked basalt fiber asphalt pavement is different. The crack coefficient index KR of cracked basalt fiber asphalt pavement is smaller under the effects of low temperature-positive load KⅠ, low temperature-partial load KⅠ, and low temperature-partial load KⅡ. Under different temperatures and stress levels, the fatigue life of basalt fiber asphalt mixture is always significantly higher than that of ordinary asphalt mixture.
Publication Date
7-14-2023
DOI
10.14048/j.issn.1671-2579.2023.03.009
First Page
61
Last Page
68
Submission Date
March 2025
Recommended Citation
Yinchuan, GUO; Chenwei, HAO; Han, GUO; Li, FAN; Aiqin, SHEN; and Lusheng, WANG
(2023)
"Crack resistance of basalt fiber asphalt pavement under the coupling effect of low temperature⁃load in heavy freezing area,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
3, Article 9.
DOI: 10.14048/j.issn.1671-2579.2023.03.009
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss3/9
Reference
[1] 温宇宁. 寒冷地区重载交通沥青路面纵向裂缝处治技术研究[J]. 北方交通, 2022(11): 62-66. WEN Yuning. Research on treatment technology for longitudinal cracks on asphalt pavement for heavy haul traffic in cold region[J]. Northern Communications, 2022(11): 62-66. [2] 谢玉田. 季冻区沥青路面裂缝的影响因素分析和处治方法[C]//中国公路学会养护与管理分会第十一届学术年会论文集. 南京, 2021: 105-108. XIE Yutian. Analysis of influencing factors of asphalt pavement cracks in seasonal freezing areas and treatment methods[C]//Proceedings of the 11th Annual Conference of the Maintenance and Management Branch of the Chinese Highway Society. Nanjing, 2021: 105-108. [3] 林博煌, 石立万, 王悦婵, 等. 沥青路面裂缝的数字图像测量与细观结构特征研究[J]. 公路, 2022,67(7): 33-40. LIN Bohuang, SHI Liwan, WANG Yuechan, et al. Research on measurement and meso-structural characteristics of asphalt pavement cracks based on digital image processing[J]. Highway, 2022, 67(7): 33-40. [4] 刘彦光. 玄武岩纤维的特性及在沥青路面中的研究应用[J]. 公路交通科技(应用技术版), 2010(12): 213-215. LIU Yanguang. Characteristics of basalt fiber and its research and application in asphalt pavement[J]. 1, 2010(12): 213-215. [5] 李建. 短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J]. 硅酸盐通报, 2017,36(2): 727-732+737. LI Jian. Effects of chopped basalt fiber on mechanical properties and microstructure of slag fly ash concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 727-732+737. [6] 穆岩, 张寒梅, 杨田田. 玄武岩纤维在京承高速路面维修工程中的应用[J]. 筑路机械与施工机械化, 2017,34(12): 91-95. MU Yan, ZHANG Hanmei, YANG Tiantian. Application of basalt fiber in pavement maintenance project of Beijing-Chengde expressway[J]. Road Machinery & Construction Mechanization, 2017, 34(12): 91-95. [7] QIN X, SHEN A Q, GUO Y C, et al. Characterization of asphalt mastics reinforced with basalt fibers[J]. Construction and Building Materials, 2018, 159: 508-516. [8] 覃潇, 申爱琴, 郭寅川. 基于关联性的玄武岩纤维沥青胶浆及其混合料性能研究[J]. 材料导报, 2016,30(12): 124-128+152. QIN Xiao, SHEN Aiqin, GUO Yinchuan. Relevance research on road performance of basalt fiber reinforced bitumen mastics and corresponding mixture[J]. Materials Review, 2016, 30(12): 124-128+152. [9] 张艳娟, 翟晓静, 马彦芹. 玄武岩纤维沥青混合料掺量优化设计与性能评价[J]. 公路交通科技(应用技术版), 2014,10(3): 25-26+87. ZHANG Yanjuan, ZHAI Xiaojing, MA Yanqin. Optimal design and performance evaluation of basalt fibre asphalt mix dosing[J]. Journal of Highway and Transportation Research and Developmen, 2014, 10(3): 25-26+87. [10] 李海光, 孙文智, 邱庆莉, 等. 玄武岩混合纤维混凝土弯曲韧性特征研究[J]. 公路交通科技, 2016,33(9): 78-83. LI Haiguang, SUN Wenzhi, QIU Qingli, et al. Study on flexural toughness property of basalt fiber concrete mixed with steel fiber[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 78-83. [11] 赵玉肖. 玄武岩纤维增强沥青混凝土抗裂性能试验研究[J]. 公路工程, 2014,39(4): 48-51. ZHAO Yuxiao. Experimental research on the anti-cracking performance of asphalt concrete reinforced by basalt fiber[J]. Highway Engineering, 2014, 39(4): 48-51. [12] YAN J C, ZHOU H, SHEN L. Study on fatigue self-healing properties of basalt fiber asphalt mixture[J]. Journal of Physics: Conference Series, 2019, 1168: 022048. [13] 范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003. FAN Tianyou. Theoretical basis of fracture[M]. Beijing: Science Press, 2003. [14] 邹玲. 沥青混合料热物性参数研究[D]. 西安: 长安大学, 2011. ZOU Ling. Study on thermophysical parameters of asphalt mixture[D]. Xi’an: Changan University, 2011. [15] 严作人. 层状路面体系的温度场分析[J]. 同济大学学报, 1984,12(3): 76-85. YAN Zuoren. Analysis of the temperature field in layered pavement system[J]. Journal of Tongji University, 1984, 12(3): 76-85. [16] 申爱琴, 王礼根, 万晨光, 等. 耦合场下吐鲁番半刚性沥青路面三维有限元分析[J]. 重庆交通大学学报(自然科学版), 2016,35(1): 40-45. SHEN Aiqin, WANG Ligen, WAN Chenguang, et al. 3D finite element analysis on coupling field of semi-rigid asphalt pavement structure in Turpan[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(1): 40-45. [17] 谢军, 郭忠印. 沥青混合料疲劳响应模型试验研究[J]. 公路交通科技, 2007,24(5): 21-25. XIE Jun, GUO Zhongyin. Researching on fatigue model of asphalt mixtures[J]. Journal of Highway and Transportation Research and Development, 2007, 24(5): 21-25. [18] 李友云, 陈佳, 王硕, 等. 沥青混合料劈裂疲劳损伤力学特性多尺度研究[J]. 长沙理工大学学报(自然科学版), 2022,19(1): 1-11+80. LI Youyun, CHEN Jia, WANG Shuo, et al. Multi-scale research on mechanical characteristics of splitting fatigue damage of asphalt mixture[J]. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(1): 1-11+80. [19] 汪彪, 侯强, 詹斌, 等. 湿度对沥青混合料疲劳性能的影响[J]. 武汉理工大学学报(交通科学与工程版), 2022,46(1): 141-145. WANG Biao, HOU Qiang, ZHAN Bin, et al. Effect of humidity on fatigue performance of asphalt mixture[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2022, 46(1): 141-145. [20] 吕松涛, 刘超超, 屈芳婷, 等. 沥青混合料疲劳性能试验与表征方法综述[J]. 中国公路学报, 2020,33(10): 67-75. LYU Songtao, LIU Chaochao, QU Fangting, et al. Test methods and characterization of fatigue performance of asphalt mixtures: a review[J]. China Journal of Highway and Transport, 2020, 33(10): 67-75.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons