•  
  •  
 

Abstract

To study the optimal maintenance strategy for bridges over the whole life cycle under the influence of life cycle environment and life cycle cost, this paper built a multi-objective optimization model for bridge life cycle maintenance decision by adopting preventive maintenance and substantial maintenance as the basic maintenance methods, and bridge reliability, life cycle environment and life cycle cost as the objective functions. Additionally, it derived the quantification method of indicators including the time-varying reliability, life cycle environment and life cycle cost indicators of the bridge, and determined the computational process of bridge life cycle maintenance decision optimization based on the genetic algorithm. The optimal maintenance strategy set for a prestressed concrete continuous T-shaped beam bridge was analyzed as an example. The results show that the implementation of preventive maintenance can improve the bridge reliability probability and reduce the frequency of substantial maintenance. Meanwhile, this can reduce the life cycle cost and environmental effect, and better extend the time of first implementing substantial maintenance, delaying the reduction of the reliability indicators.

Publication Date

9-14-2023

DOI

10.14048/j.issn.1671-2579.2023.04.020

First Page

124

Last Page

130

Submission Date

March 2025

Reference

[1] 交通运输部.2020年我国交通运输行业发展统计公报发布[J]. 隧道建设(中英文), 2021, 41(6): 963. Ministry of Transport.2020 statistical bulletin on the development of China's transport sector released[J]. Tunnel Construction, 2021, 41(6): 963. [2] 杭京, 杨利斌, 沈建华, 等. 钢桁架桥预防性养护技术研究[J]. 中外公路, 2022, 42(3): 80-84. HANG Jing, YANG Libin, SHEN Jianhua, et al. Research on preventive maintenance of steel truss bridge[J]. Journal of China & Foreign Highway, 2022, 42(3): 80-84. [3] 宋庄庄, 朱洪洲. 沥青路面全寿命周期节能减排策略案例研究[J]. 中外公路, 2020, 40(5): 36-42. SONG Zhuangzhuang, ZHU Hongzhou. Case study on energy conservation and emission reduction strategy of asphalt pavement in life cycle[J]. Journal of China & Foreign Highway, 2020, 40(5): 36-42. [4] BIONDINI F, FRANGOPOL D M. Life-cycle performance of deteriorating structural systems under uncertainty: review[J]. Journal of Structural Engineering, 2016, 142(9):F4016001. [5] GHODOOSI F, ABU-SAMRA S, ZEYNALIAN M, et al. Maintenance cost optimization for bridge structures using system reliability analysis and genetic algorithms[J]. Journal of Construction Engineering and Management, 2018, 144(2): 04017116. [6] 程健, 黎恩华. 基于粒子群算法的桥梁多目标维护决策优化[J]. 工程与建设, 2020, 34(4): 767-769. CHENG Jian, LI Enhua. Multi objective maintenance decision optimization of bridge based on particle swarm optimization[J]. Engineering and Construction, 2020, 34(4): 767-769. [7] PANG B, YANG P C, WANG Y F, et al. Life cycle environmental impact assessment of a bridge with different strengthening schemes[J]. The International Journal of Life Cycle Assessment, 2015, 20(9): 1300-1311. [8] ZHANG Y R, WU W J, WANG Y F. Bridge life cycle assessment with data uncertainty[J]. The International Journal of Life Cycle Assessment, 2016, 21(4): 569-576. [9] RODRIGUES J N, PROVIDÊNCIA P, DIAS A M P G. Sustainability and lifecycle assessment of timber-concrete composite bridges[J]. Journal of Infrastructure Systems, 2017, 23(1):04016025. [10] GARCÍA-SEGURA T, YEPES V, FRANGOPOL D M, et al. Lifetime reliability-based optimization of post-tensioned box-girder bridges[J]. Engineering Structures, 2017, 145: 381-391. [11] 杨伟军, 张建仁, 梁兴文. 基于动态可靠度的服役桥梁维修加固策略[J]. 中国公路学报, 2002, 15(3): 49‑52. YANG Weijun, ZHANG Jianren, LIANG Xingwen. Strategy of repair and reinforcement on existing bridges based on time-dependent reliability[J]. China Journal of Highway and Transport, 2002, 15(3):49‑52. [12] ANG A H S, DE LEON D. Determination of optimal target reliabilities for design and upgrading of structures[J]. Structural Safety, 1997, 19(1): 91-103. [13] 邵旭东, 刘新华, 刘代全, 等. 基于概率的桥梁劣化模型与维护策略关系[J]. 重庆交通大学学报(自然科学版), 2007, 26(5): 32-36+107. SHAO Xudong, LIU Xinhua, LIU Daiquan, et al. Probability-based bridge deterioration model and maintenance strategy relations[J]. Journal of Chongqing Jiaotong University (Natural Science), 2007, 26(5): 32-36+107. [14] FRANGOPOL D M, SOLIMAN M. Life-cycle of structural systems: recent achievements and future directions[J]. Structure and Infrastructure Engineering, 2016, 12(1): 1-20. [15] 交通部公路规划设计院. 公路工程结构可靠度设计统一标准: GB/T 50283—1999[S]. 北京: 中国计划出版社, 1999. Research Institute of Highway Ministry of Transport.. Unified standard for reliability design of highway engineering structures: GB/T 50283—1999[S]. Beijing: China Planning Press, 1999. [16] 谷立静, 林波荣, 顾道金, 等. 中国建筑生命周期环境影响评价的终点破坏模型[J]. 科学通报, 2008, 53(15): 1858-1863. GU Lijing, LIN Borong, GU Daojin, et al. End-point failure model for environmental impact assessment of building life cycle in China[J]. Chinese Science Bulletin, 2008, 53(15): 1858-1863. [17] 武文杰, 王元丰, 解会兵. 基于LCA和时变可靠度分析的桥梁维护策略优化[J]. 公路交通科技, 2013, 30(9): 94-100. WU Wenjie, WANG Yuanfeng, XIE Huibing. Bridge maintenance strategies optimization based on life cycle assessment and time-dependent reliability analysis[J]. Journal of Highway and Transportation Research and Development, 2013, 30(9): 94-100. [18] 科诺·罗娜, (丹)思恩·米根, (中)刘静玲, 等. 可持续发展实用工具与案例-环境评价卷[M]. 北京: 中国环境科学出版社, 2009. RONA K, (Dan) MEAGAN S, LIU J L. Tools for sustainable development[M]. Beijing: China Environmental Science Press, 2009. [19] VEGANZONES MUÑOZ J J, PETTERSSON L, SUNDQUIST H, et al. Life-cycle cost analysis as a tool in the developing process for new bridge edge beam solutions[J]. Structure and Infrastructure Engineering, 2016, 12(9): 1185-1201. [20] SHIM H S, LEE S H. Developing a probable cost analysis model for comparing bridge deck rehabilitation methods[J]. KSCE Journal of Civil Engineering, 2016, 20(1): 68-76. [21] THOFT-CHRISTENSEN P. Life-cycle cost-benefit (LCCB) analysis of bridges from a user and social point of view[J]. Structure and Infrastructure Engineering, 2009, 5(1): 49-57. [22] BARONE G, FRANGOPOL D M. Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost[J]. Structural Safety, 2014, 48: 40-50. [23] 中交公路规划设计院有限公司. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362—2018[S]. 北京: 人民交通出版社, 2018. Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts: JTG 3362—2018[S]. Beijing: China Communications Press, 2018.

Share

COinS