Abstract
To optimize the structural scheme of steel-ultra-high performance concrete (steel-UHPC) light composite stiffening beams for large-span self-anchored suspension bridges, by taking the Qinglongzhou Bridge in Yiyang as the research object, this paper employed finite element simulation and full-scale tests to compare and verify three steel-UHPC composite stiffening beam schemes, and compare the indicators such as static behavior and economic properties. The results show that the UHPC stiffened girder is the best choice for the structural performance and economic characteristics. The results show that the UHPC waferboard, UHPC longitudinal rib plate without web reinforcement, UHPC longitudinal rib plate with long bolts and steel strips can meet the design requirements. Specifically, the UHPC longitudinal rib plate with long bolts and steel strips has higher flexural rigidity and crack-resistant safety reserves, and can reach 5.4 times the demand value. The new type of T joints of the deck plate can realize zero-welding of the deck plate by reasonably reserving the reinforcement, and reduce the breaking joints caused by fiber discontinuity in the high tensile stress area in the UHPC plate. The steel-UHPC light composite beam features superior performance, high applicability, and sound economy and application prospects.
Publication Date
9-14-2023
DOI
10.14048/j.issn.1671-2579.2023.04.024
First Page
147
Last Page
152
Submission Date
March 2025
Recommended Citation
Xin, ZHANG; Yu, LI; and Yong, LIU
(2023)
"Research on structural design of Steel-UHPC light composite beam of large-span self-anchored suspension bridge,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
4, Article 24.
DOI: 10.14048/j.issn.1671-2579.2023.04.024
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss4/24
Reference
[1] 周孟波. 悬索桥手册[M]. 北京: 人民交通出版社, 2003. ZHOU Mengbo. Suspension bridge handbook[M]. Beijing: China Communications Press, 2003. [2] 聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011. NIE Jianguo. Steel-concrete composite bridges[M]. Beijing: China Communications Press, 2011. [3] 陈开利. 中日悬索桥缆索养护管理关键技术[J]. 世界桥梁, 2020, 48(6): 70-76. CHEN Kaili. Key main cable maintenance techniques for suspension bridges in China and Japan[J]. World Bridges, 2020, 48(6): 70-76. [4] 肖汝诚, 庄冬利, 杨乐, 等. 部分地锚式悬索桥的基本结构性能[J]. 同济大学学报(自然科学版), 2020, 48(11): 1545-1551+1587. XIAO Rucheng, ZHUANG Dongli, YANG Le, et al. Basic structural performance of partially anchored suspension bridge[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1545-1551+1587. [5] 王超, 吴联活, 张明金, 等. 大跨度悬索桥施工阶段颤振稳定性措施研究[J]. 世界桥梁, 2020, 48(6): 38-42. WANG Chao, WU Lianhuo, ZHANG Mingjin, et al. Measures to improve flutter stability of long-span suspension bridge in construction stage[J]. World Bridges, 2020, 48(6): 38-42. [6] 彭强, 王奇锐. 大跨径钢桁梁悬索桥加劲梁吊装过程的关键技术研究[J]. 公路, 2020, 65(12): 1-5. PENG Qiang, WANG Qirui. Research on key techniques in hoisting process of stiffening girder for the long-span suspension bridge with steel truss[J]. Highway, 2020, 65(12): 1-5. [7] 郝宪武, 舒鹏, 郝键铭. 大跨度非对称悬索桥的静风稳定性研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(12): 53-59. HAO Xianwu, SHU Peng, HAO Jianming. Static wind stability of long-span asymmetric suspension bridge[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(12): 53-59. [8] 毛伟琦, 胡雄伟. 中国大跨度桥梁最新进展与展望[J]. 桥梁建设, 2020, 50(1): 13-19. MAO Weiqi, HU Xiongwei. Latest developments and prospects for long-span bridges in China[J]. Bridge Construction, 2020, 50(1): 13-19. [9] 谢飞, 谢智荣, 肖百豪. 正交异性钢桥面铺装病害分析及维修对策研究[J]. 公路与汽运, 2020(5): 125-128. XIE Fei, XIE Zhirong, XIAO Baihao. Disease analysis and maintenance countermeasures of orthotropic steel bridge deck pavement[J]. Highways & Automotive Applications, 2020(5): 125-128. [10] 汪珍, 王莹. 正交异性钢桥面板的疲劳裂纹扩展规律[J]. 中南大学学报(自然科学版), 2020, 51(7): 1873-1882. WANG Zhen, WANG Ying. Analysis of fatigue crack propagation on orthotropic steel bridge deck[J]. Journal of Central South University (Science and Technology), 2020, 51(7): 1873-1882. [11] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30+39. ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30+39. [12] 赵进新. 浅谈钢桥面板疲劳破坏的影响因素及应对措施[J]. 城市建筑, 2020, 17(15): 171-172. ZHAO Jinxin. Discussion on the influence factors and countermeasures of fatigue failure of steel bridge deck[J]. Urbanism and Architecture, 2020, 17(15): 171-172. [13] 王春生, 翟慕赛, Houankpo TON. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102-111. WANG Chunsheng, ZHAI Musai, TON H. Fatigue strength of typical details in orthotropic steel bridge deck[J]. Engineering Mechanics, 2020, 37(8): 102-111. [14] 汪珍, 王莹. 正交异性钢桥面板的疲劳裂纹扩展规律[J]. 中南大学学报(自然科学版), 2020, 51(7): 1873-1882. WANG Zhen, WANG Ying. Analysis of fatigue crack propagation on orthotropic steel bridge deck[J]. Journal of Central South University (Science and Technology), 2020, 51(7): 1873-1882. [15] WOLCHUK R. Lessons from weld cracks in orthotropic decks on three European bridges[J]. Journal of Structural Engineering, 1990, 116(1): 75-84. [16] 张海萍. 车辆荷载运营状态对预应力简支梁桥的疲劳性能影响研究[D]. 长沙: 长沙理工大学, 2014. ZHANG Haiping. Study on the influence of vehicle load operation state on fatigue performance of prestressed simply supported beam bridge[D]. Changsha: Changsha University of Science & Technology, 2014. [17] 邵旭东, 曹君辉, 易笃韬, 等. 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25(2): 40-45. SHAO Xudong, CAO Junhui, YI Dutao, et al. Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China Journal of Highway and Transport, 2012, 25(2): 40-45. [18] 陈胜利. 组合加劲梁悬索桥静动力性能及轻型桥面板设计方法研究[D]. 天津: 天津大学, 2018. CHEN Shengli. Study on static and dynamic performance of suspension bridge with composite stiffening beam and design method of light deck[D]. Tianjin: Tianjin University, 2018. [19] 海南省市场监督管理局. 超高性能轻型组合桥面结构技术规程: DB46/T 591—2023[S]. 北京: 人民交通出版社, 2015. Technical Specification for Ultra-high Performance Lightweight Composite Structure Deck: DB46/T 591—2023[S]. Beijing: China Communications Press, 2015. [20] TOUTLEMONDE F,RESPLENDINO J,SORELLI L,et al.Innovative design of ultra‑high performance fiber‑reinforced concrete ribbed slab:Experimental validation and preliminary detailed analyses[J].American Concrete Institute,2006,2:1187‑1205. [21] SORELLI L G,FANNING P,TOUTLEMONDE F.Innovative bridge system of ultra high performance fibre reinforced concrete:Experiments, modeling and design[C]//7th International Conference on “Short and Medium Span Bridge”,Montreal,Canada,2006:22‑24. [22] 邵旭东, 曹君辉. 面向未来的高性能桥梁结构研发与应用[J]. 建筑科学与工程学报, 2017, 34(5): 41-58. SHAO Xudong, CAO Junhui. Research and application of high performance bridge structures toward future[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 41-58. [23] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23): 33-43. SHAO Xudong, QIU Minghong, YAN Banfu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Review, 2017, 31(23): 33-43. [24] 李嘉, 杨波, 邵旭东, 等. 钢桥面-薄层CRRPC组合结构栓钉连接件抗剪疲劳性能研究[J]. 土木工程学报, 2016, 49(6): 67-75. LI Jia, YANG Bo, SHAO Xudong, et al. Research on shear fatigue of studs for composite deck system of steel slab and thin CRRPC layer[J]. China Civil Engineering Journal, 2016, 49(6): 67-75.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons