•  
  •  
 

Abstract

By taking the pier bearing platform 9# of the non-navigable bridge in the eastern flood-relief area of Shenzhen-Zhongshan Link as the research project, this paper introduced the cofferdam structure of prefabricated combined steel sheet piles using the support-first construction process from the aspects of the cofferdam structural form, cross-section type of steel sheet piles, construction process, and support system, and adopted the finite element method to numerically analyze the whole cofferdam construction process. The combined cross-section of cap-shaped steel sheet piles and H-shaped steel greatly improves the rigidity of steel sheet piles. Additionally, the construction process of the support-first method leads to more reasonable force of sheet piles and internal support, thus making the steel sheet pile cofferdam suitable for larger water depth. Meanwhile, the prefabricated internal support structure system reduces the hidden safety danger of steel sheet pile replacement, with strong operability and high prefabrication degree of components. This enhances the conversion efficiency of the internal support system and turnover efficiency of the materials in the cofferdam and reduces the construction period and cost.

Publication Date

9-14-2023

DOI

10.14048/j.issn.1671-2579.2023.04.027

First Page

165

Last Page

169

Submission Date

March 2025

Reference

[1]中国建筑科学研究院.建筑基坑支护技术规范:JGJ 20—2012[S].北京:中国建筑工业出版社,2012. China Academy of Building Research.Technical specification for retaining and protection of building foundation excavations:JGJ 20—2012[S].Beijing:China Architecture & Building Pres,2012. [2] 广州市市政集团有限公司. 钢围堰工程技术标准: GB/T 51295—2018[S]. 北京: 中国计划出版社, 2018. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard of steel cofferdam engineering: GB/T 51295—2018[S]. Beijing: China Planning Press, 2018. [3] 郑瑞杰, 彭鹏, 郭劲. 整体装配式钢板桩围堰在外海深水环境中的应用[J]. 施工技术, 2013, 42(21): 73-77. ZHENG Ruijie, PENG Peng, GUO Jin. Construction application of overall assembly steel sheet pile cofferdam in offshore environment[J]. Construction Technology, 2013, 42(21): 73-77. [4] 张骏. 桥梁深水基础钢板桩围堰受力分析与应用[J]. 桥梁建设, 2012, 42(5): 74-81. ZHANG Jun. Force condition analysis and application of steel sheet pile cofferdam for bridge deepwater foundation[J]. Bridge Construction, 2012, 42(5): 74-81. [5] 曾庆敦, 姚双龙. 钢板桩围堰及支撑系统的稳定安全性分析[J]. 中外公路, 2009, 29(6): 174-177. ZENG Qingdun, YAO Shuanglong. Stability and safety analysis of steel sheet pile cofferdam and support system[J]. Journal of China & Foreign Highway, 2009, 29(6): 174-177. [6] 姚德波, 殷新锋. 基坑锁口钢管桩围堰的受力行为分析[J]. 中外公路, 2017, 37(2): 27-32. YAO Debo, YIN Xinfeng. Analysis of force behaviour of steel pipe pile cofferdams in pit locks[J]. Journal of China & Foreign Highway, 2017, 37(2): 27-32. [7] 杜闯, 丁红岩, 张浦阳, 等. 钢板桩围堰有限元分析[J]. 岩土工程学报, 2014, 36(S2): 159-164. DU Chuang, DING Hongyan, ZHANG Puyang, et al. Finite element analysis of steel sheet pile cofferdam[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 159-164. [8] 潘泓, 王加利, 曹洪, 等. 钢板桩围堰在不同施工工序下的变形及内力特性研究[J]. 岩石力学与工程学报, 2013, 32(11): 2316-2324. PAN Hong, WANG Jiali, CAO Hong, et al. Research on deformation and internal force characteristics of steel sheet pile cofferdam under different construction procedures[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2316-2324. [9] 贺文波. 高深水区钢板桩围堰逆作法施工技术研究[J]. 武汉理工大学学报, 2018, 40(3): 59-64. HE Wenbo. Reverse construction technology for fteel-sheet-pile cofferdam in high-water area[J]. Journal of Wuhan University of Technology, 2018, 40(3): 59-64.

Share

COinS