•  
  •  
 

Abstract

To accurately assess and calculate the structural stability of layered surrounding rock tunnels during construction, this paper firstly constructed a risk assessment index system for layered surrounding rock tunnels based on the consideration of factors of hydrogeology, structural surfaces, engineering, external forces, and topography and geomorphology. Based on the Delphi method (DELPHI) and entropy weight method (EWM), the combination of indicators was assigned. Based on the typical event samples and the mining of classical domains-joint domains of the assessment system, the extension analytic hierarchy process calculation model (EAHP) and normal cloud computing model (NCM) were built to assess the stability of layered surrounding rock tunnels respectively. The two risk assessment algorithms for two layered surrounding rock tunnels were validated by employing the Gonghe Tunnel. The results show that the assessment results of EAHP, NCM and BP neural network algorithms are in agreement with each other, the stability of the Gonghe Tunnel is in the range of Ⅲ‒Ⅳ, and the tunnel structure is in the “serious‒abnormal” state. This coincides with the frequent deformation of steel arch frames and occasional collapse accidents at the construction sites, and verifies the reliability of the risk assessment system and theoretical algorithms of this study on layered surrounding rock tunnels.

Publication Date

9-14-2023

DOI

10.14048/j.issn.1671-2579.2023.04.034

First Page

209

Last Page

216

Submission Date

March 2025

Reference

[1] 罗选红. 包西铁路施工期隧道水平层状围岩稳定性评价与支护[J]. 铁道勘察, 2010, 36(2): 43-46. LUO Xuanhong. Evaluation on stability of surrounding rock in horizontal layer for tunnel in construction and its supports on baoxi railway[J]. Railway Investigation and Surveying, 2010, 36(2): 43-46. [2] 夏彬伟, 陈果, 康勇, 等. 层状岩体围岩变形破坏特征及稳定性评价[J]. 水文地质工程地质, 2010, 37(4): 48-52. XIA Binwei, CHEN Guo, KANG Yong, et al. Deformation characteristic and stability analyses of layered rockmass[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 48-52. [3] 田卫明. 层次可拓法在层状围岩隧道风险评估中的应用[J]. 工业安全与环保, 2019, 45(9): 68-71+40. TIAN Weiming. Application of AHP-extenics model in risk assessment of layered surrounding rock tunnel[J]. Industrial Safety and Environmental Protection, 2019, 45(9): 68-71+40. [4] 于剑舟. 层状围岩施工变形控制施工技术研究[J]. 价值工程, 2019, 38(7): 142-144. YU Jianzhou. Research on construction technology of deformation control of layered surrounding rock[J]. Value Engineering, 2019, 38(7): 142-144. [5] 文竞舟. 基于现场监测的倾斜层状隧道围岩稳定性的研究[D]. 重庆: 重庆交通大学, 2009. WEN Jingzhou. Study on stability of surrounding rock of inclined layered tunnel based on field monitoring[D]. Chongqing: Chongqing Jiaotong University, 2009. [6] 涂瀚. 水平层状围岩隧道稳定性及破坏机理研究[J]. 铁道工程学报, 2018, 35(9): 75-79+87. TU Han. Research on the stability and failure mechanism of horizontal layered surrounding rock tunnel[J]. Journal of Railway Engineering Society, 2018, 35(9): 75-79+87. [7] 陈俊栋, 葛修润, 宋丹青, 等. 层状岩质边坡成洞过程中围岩变形及力学特征研究[J]. 水利与建筑工程学报, 2018, 16(6): 149-154. CHEN Jundong, GE Xiurun, SONG Danqing, et al. Deformation and mechanical characteristics of bedding rock slope in tunnel excavation[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(6): 149-154. [8] 郑飞.层状围岩深埋长大隧道岩爆安全控制技术研究[D].成都:西南交通大学,2016. ZHENG Fei. Research on safety control technology of rock explosion in deeply buried long tunnels with laminated surrounding rocks [D]. Chengdu: Southwest Jiaotong University, 2016. [9] 王更峰. 层状围岩隧道变形控制技术探讨与实践[J]. 铁道建筑技术, 2013(7): 28-31. WANG Gengfeng. Discussion and practice on large deformation control technology of tunnel in layered rock[J]. Railway Construction Technology, 2013(7): 28-31. [10] 屈鹏程. 层状碎裂结构隧道围岩稳定性分析及防灾对策研究: 以叙大铁路核桃湾隧道为例[D]. 成都: 成都理工大学, 2015. QU Pengcheng. Stability analysis of surrounding rock of layered fragmentation structure tunnel and study on disaster prevention countermeasures: taking hetaowan tunnel of Xuzhou-Dalian railway as an example[D]. Chengdu: Chengdu University of Technology, 2015. [11] 吴渤. 层状岩体隧道围岩扰动区演化与锚固机理研究[D]. 武汉: 中国地质大学, 2016. WU Bo. Study on evolution and anchoring mechanism of surrounding rock disturbance area of layered rock tunnel[D]. Wuhan: China University of Geosciences, 2016. [12] 刘锦欣. 层状围岩隧道开挖稳定性及锚杆非对称支护方式研究[D]. 北京: 北京交通大学, 2018. LIU Jinxin. Study on excavation stability of layered surrounding rock tunnel and asymmetric bolt support method[D]. Beijing: Beijing Jiaotong University, 2018. [13] 丁尧, 王俊, 徐国文. 层状岩体隧道围岩稳定性的数值模拟分析[J]. 成都理工大学学报(自然科学版), 2019, 46(3): 363-372. DING Yao, WANG Jun, XU Guowen. Numerical simulation analysis on the tunnel stability in layered rock mass[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(3): 363-372. [14] 王安. 水平层状围岩隧道变形特征及爆破方案优化分析[D]. 武汉: 华中科技大学, 2017. WANG An. Deformation characteristics of horizontal layered surrounding rock tunnel and optimization analysis of blasting scheme[D]. Wuhan: Huazhong University of Science and Technology, 2017. [15] 卢泽霖. 水平层状围岩隧道顶板力学模型与稳定性研究[D]. 西安: 西安工业大学, 2018. LU Zelin. Mechanical modelling and stability study of tunnel roof in horizontal layered surrounding rock. Xi’an: Xi’an Technological University, 2018. [16] 吕跃进, 张维, 曾雪兰. 指数标度与1-9标度互不相容及其比较研究[J]. 工程数学学报, 2003, 20(8): 77-81. LU Yuejin, ZHENG Wei, ZENG Xuelan. Exponential scale not being consistent with 1-9 scale[J]. Chinese Journal of Engineering Mathematics, 2003, 20(8): 77-81. [17] 吕跃进. 指数标度判断矩阵的一致性检验方法[J]. 统计与决策, 2006, 22(18): 31-32. LYU Yuejin. A consistency test for exponential scale judgement matrices[J]. Statistics & Decision, 2006, 22(18): 31-32. [18] 李晓红, 夏彬伟, 李丹, 等. 深埋隧道层状围岩变形特征分析[J]. 岩土力学, 2010, 31(4): 1163-1167. LI Xiaohong, XIA Binwei, LI Dan, et al. Deformation characteristics analysis of layered rockmass in deep buried tunnel[J]. Rock and Soil Mechanics, 2010, 31(4): 1163-1167.

Share

COinS