•  
  •  
 

Abstract

To improve the frost resistance of concrete pavement under fatigue load, this paper simulated the freeze-thaw damage of concrete pavement under vehicle load by indoor fatigue loading and alternating freeze-thaw cycling test. Meanwhile, it designed the bending tensile test to test the residual bending tensile strength of nano SiO2-modified pavement concrete after freezing and thawing, and adopted the mercury injection method to test the microscopic pore structures of concrete. Additionally, by employing the electron microscope, the change rules of pores in the concrete under the action of fatigue load were observed, and the effect of nano SiO2 dosage, the number of fatigue load action on the frost resistance of pavement concrete was studied. The results show that under the action of fatigue load, adding appropriate amount of nano SiO2 can significantly improve the frost resistance of concrete pavement, and the increasing number of fatigue load action leads to more significant improvement effect of nano SiO2. Under the nano SiO2 dosage of 2%, the frost resistance is the best. Fatigue load will destroy the stability of the concrete pore structures, bring about pore connectivity, and accelerate the freeze-thaw damage of concrete specimens. Nano SiO2 can fill the concrete pores, reduce the void content of concrete pores, and improve the pore size distribution of concrete. Additionally, the fatigue load-induced pore structure destabilization and pore connectivity can be alleviated to improve the frost resistance of concrete pavement.

Publication Date

9-14-2023

DOI

10.14048/j.issn.1671-2579.2023.04.039

First Page

243

Last Page

249

Submission Date

March 2025

Reference

[1] 崔宏环, 王伟浩, 闫子麟, 等. 季冻区路基填土冻胀特性试验研究[J]. 中外公路, 2021, 41(1): 21-25. CUI Honghuan, WANG Weihao, YAN Zilin, et al. Experimental study on frost heaving characteristics of railway subgrade in seasonal frozen area[J]. Journal of China & Foreign Highway, 2021, 41(1): 21-25. [2] 郭寅川, 申爱琴, 王胜难, 等. 季冻区路面混凝土界面区劣化行为及与强度相关性[J]. 中国公路学报, 2019, 32(8): 49-57. GUO Yinchuan, SHEN Aiqin, WANG Shengnan, et al. Deterioration behavior of interfacial transition zone and its correlation with strength of a concrete pavement in seasonal frost region[J]. China Journal of Highway and Transport, 2019, 32(8): 49-57. [3] 薛刚, 张悦. 冻融循环作用后橡胶混凝土与钢筋锚固性能试验研究[J]. 硅酸盐通报, 2019, 38(1): 1-6. XUE Gang, ZHANG Yue. Experimental study on the anchorage performance of rubber concrete and steel after freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 1-6. [4] 吕翔.季冻区玄武岩纤维活性粉末混凝土耐久性能和力学性能研究[D].长春:吉林大学,2021. LYU Xiang. Research on durability and mechanical properties of basalt fibre-activated powder concrete in the seasonal freezing zone [D]. Changchun: Jilin University,2021. [5] 赵倩倩, 程培峰, 魏玉伟. 季冻区水泥路面预防性养护时机的选择[J]. 科学技术与工程, 2018, 18(18): 282-286. ZHAO Qianqian, CHENG Peifeng, WEI Yuwei. Choices of preventive maintenance timing for concrete pavement in seasonal frozen region[J]. Science Technology and Engineering, 2018, 18(18): 282-286. [6] 郭寅川, 丑涛, 申爱琴, 等. 湿热地区水性环氧树脂对桥面板混凝土疲劳性能的改善[J]. 长安大学学报(自然科学版), 2021, 41(4): 1-10. GUO Yinchuan, CHOU Tao, SHEN Aiqin, et al. Improvement of fatigue performance of bridge deck concrete by waterborne epoxy resin in hot and humid regions[J]. Journal of Chang’an University (Natural Science Edition), 2021, 41(4): 1-10. [7] LIU Y J, DING L, YANG T Y, et al. Effect of silica powder to frost resistance of concrete[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(3): 032052. [8] 董玉文, 彭亮, 谢辉. 橡胶粉对混凝土抗冻耐久性的影响[J]. 重庆交通大学学报(自然科学版), 2021, 40(7): 112-117. DONG Yuwen, PENG Liang, XIE Hui. Effect of rubber powder on frost-resistance durability of concrete[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(7): 112-117. [9] 陈旭, 汉光昭, 裴玉胜, 等. 不同含量石墨烯对混凝土抗冻性能的影响[J]. 建筑施工, 2021, 43(8): 1659-1663. CHEN Xu, HAN Guangzhao, PEI Yusheng, et al. Infl uence of different content of graphene on frost resistance of concrete[J]. Building Construction, 2021, 43(8): 1659-1663. [10] 何威, 许吉航. 少层石墨烯对普通混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1477-1488. HE Wei, XU Jihang. Effect of few-layer graphene on properties of ordinary concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1477-1488. [11] 刘建邦, 汪洋. 氧化石墨烯对HV FA混凝土力学和耐磨性能的影响[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(5): 693-699. LIU Jianbang, WANG Yang. Study on the effect of graphene oxide on the mechanics and wear resistance of high-volume fly ash concrete[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2020, 52(5): 693-699. [12] 高国华, 黄卫东, 李传海. 纳米SiO2增强骨料裹浆对混凝土抗冻性能的改善[J]. 建筑材料学报, 2021, 24(1): 45-53. GAO Guohua, HUANG Weidong, LI Chuanhai. Improvement of frost resistance for concrete by coating aggregate with nano-SiO2[J]. Journal of Building Materials, 2021, 24(1): 45-53. [13] PUENTES J, BARLUENGA G, PALOMAR I. Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability[J]. Construction and Building Materials, 2015, 81: 154-161. [14] SAID A M, ISLAM M S, ZEIDAN M S, et al. Effect of nano-silica on the properties of concrete and its interaction with slag[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(9): 47-55. [15] 赵百超, 陈四利, 侯芮. 冻融循环与疲劳荷载作用下水泥土力学特性试验研究[J]. 中外公路, 2021, 41(4): 362-365. ZHAO Baichao, CHEN Sili, HOU Rui. Experimental study on mechanical properties of cement-soil under freeze-thaw cycle and fatigue load[J]. Journal of China & Foreign Highway, 2021, 41(4): 362-365. [16] 逯静洲, 张楠, 国力, 等. 疲劳-冻融多次交互作用下混凝土损伤特性试验研究[J]. 混凝土, 2018(4): 46-49. LU Jingzhou, ZHANG Nan, GUO Li, et al. Experimental study on the damage characteristics of concrete under the multiple interactions of fatigue and freezing-thawing cycles[J]. Concrete, 2018(4): 46-49. [17] 逯静洲, 田立宗, 童立强, 等. 经受疲劳荷载与冻融循环作用后混凝土动态性能研究[J]. 应用基础与工程科学学报, 2018, 26(5): 1055-1066. LU Jingzhou, TIAN Lizong, TONG Liqiang, et al. Dynamic properties of concrete subjected to combined action of fatigue load and freeze-thaw cycles[J]. Journal of Basic Science and Engineering, 2018, 26(5): 1055-1066. [18] 詹培敏, 孙斌祥, 何智海, 等. 纳米碳酸钙对水泥基材料性能影响的研究进展[J]. 硅酸盐通报, 2018, 37(3): 881-887+910. ZHAN Peimin, SUN Binxiang, HE Zhihai, et al. Research progress of effect of nano-calcium carbonate on the properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 881-887+910. [19] 曹竞荣. 纳米SiO2改性水泥混凝土优选及疲劳寿命预估[J]. 中外公路, 2020, 40(4): 286-291. CAO Jingrong. Optimal selection and fatigue life prediction of cement concrete modified by nano-SiO2[J]. Journal of China & Foreign Highway, 2020, 40(4): 286-291. [20] YAN L, XING Y M, LI S W, et al. The micro analysis and influence of nano SiO2 on high-temperature compressive performance of steel fiber reinforced concrete (SFRC)[J]. IOP Conference Series: Earth and Environmental Science, 2021, 719(2): 022082. [21] 张雄, 黄廷皓, 张永娟, 等. Image-Pro Plus混凝土孔结构图像分析方法[J]. 建筑材料学报, 2015, 18(1): 177-182. ZHANG Xiong, HUANG Tinghao, ZHANG Yongjuan, et al. Image-pro plus analysis of pore structure of concrete[J]. Journal of Building Materials, 2015, 18(1): 177-182.

Share

COinS