•  
  •  
 

Abstract

To solve the difficult placement of small structures on highways caused by the decreasing workability of cement concrete construction in winter seasons, this paper developed a nanomodified additive to investigate its effect on the performance of cement concrete. Sulfonate naphthaleneformaldehyde (SNF), nanoSiO2, rosin soap (WSR) and sodium nitrate (NaNO3) were formulated into a variety of additives in different ratios and mixing contents to prepare cement concrete, with the fluidity, segregation and compressive strength studied. The results show that the optimal ratio (mass) of nanomodified additives is SNF:0.4%, nanoSiO2:0.1%, WSR:0.05%, and NaNO3:4.0%. The fluidity, segregation and compressive strength of the concrete prepared with the optimal nanomodified additive ratio meet the requirements, thus finding applications in the placement and maintenance of cement concrete for small structures on highways.

Publication Date

9-14-2023

DOI

10.14048/j.issn.1671-2579.2023.04.046

First Page

284

Last Page

291

Submission Date

March 2025

Reference

[1]杨森.冻融循环与盐冻侵蚀作用下混凝土耐久性能研究[D].沈阳:沈阳建筑大学,2019. YANG Sen. Research on durability performance of concrete under freeze-thaw cycle and salt freezing erosion [D]. Shenyang: Shenyang University of Architecture, 2019. [2] 张爱丽, 郭颜凤, 孙红. 腐蚀环境下外加剂对混凝土耐久性的影响[J]. 中外公路, 2022, 42(6): 202-205. ZHANG Aili, GUO Yanfeng, SUN Hong. Influence of admixtures on durability of concrete in corrosive environment[J]. Journal of China & Foreign Highway, 2022, 42(6): 202-205. [3] 崔海军. 聚丙烯纤维对海砂混凝土的耐久性试验研究[J]. 中外公路, 2022, 42(4): 203-205. CUI Haijun. Experimental study on durability of polypropylene fiber to sea sand concrete[J]. Journal of China & Foreign Highway, 2022, 42(4): 203-205. [4] SVINTSOV A P. Effect of petroleum products on physical and mechanical properties of concrete and the reliability of load-bearing structures[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 4277-4287. [5] 张擎, 黄良贤, 张辉, 等. 基于致密增韧机理的高抗折混凝土制备试验研究[J]. 中外公路, 2020, 40(3): 247-253. ZHANG Qing, HUANG Liangxian, ZHANG Hui, et al. Experimental study on the preparation of high flexural concrete based on dense toughening mechanism[J]. Journal of China & Foreign Highway, 2020, 40(3): 247-253. [6] 左惠, 申爱琴, 史泽恒. 水泥颗粒分布与道路混凝土路面表面收缩的灰色关联[J]. 中外公路, 2010, 30(5): 96-98. ZUO Hui, SHEN Aiqin, SHI Zeheng. Grey correlation between cement particle distribution and surface shrinkage of road concrete pavements[J]. Journal of China & Foreign Highway, 2010, 30(5): 96-98. [7] 侯海元, 周胜波, 闫强. 影响道路水泥混凝土抗冻性能的细观损伤因子研究[J]. 中外公路, 2021, 41(3): 314-318. HOU Haiyuan, ZHOU Shengbo, YAN Qiang. Study on frost resistance of road cement concrete affected by meso-damage factors[J]. Journal of China & Foreign Highway, 2021, 41(3): 314-318. [8] BARABANSHCHIKOV Y G, KOMARINSKIY M V. Influence of superplasticizer S-3 on the technological properties of concrete mixtures[J]. Advanced Materials Research, 2014, 941/942/943/944: 780-785. [9] 郭志坚, 李文凯. 碱激发矿渣/粉煤灰复合混凝土性能研究[J]. 中外公路, 2022, 42(5): 216-220. GUO Zhijian, LI Wenkai. Study on properties of alkali activated slag/fly ash composite concrete[J]. Journal of China & Foreign Highway, 2022, 42(5): 216-220. [10] 熊辉, 刘洪辉. 掺钢纤维和矿渣的高性能再生混凝土性能研究[J]. 中外公路, 2020, 40(1): 206-211. XIONG Hui, LIU Honghui. Influence of high performance recycled concrete mixed with steel fibers and slags[J]. Journal of China & Foreign Highway, 2020, 40(1): 206-211. [11] POTAPOV V V, TUMANOV A V, ZAKURAZHNOV M S, et al. Enhancement of concrete durability by introducing SiO2 nanoparticles[J]. Glass Physics and Chemistry, 2013, 39(4): 425-430. [12] 钟昌茂, 万旭升, 龚富茂, 等. 硫酸盐渍土物理特性及纳米SiO2固化机理研究[J]. 中外公路, 2021, 41(2): 267-272. ZHONG Changmao, WAN Xusheng, GONG Fumao, et al. Study on physical characteristics of sulfate salty soil and effect of nano-silica on its modification and curing mechanism[J]. Journal of China & Foreign Highway, 2021, 41(2): 267-272. [13] 孙琳. 纳米SiO2改性水泥混凝土抗盐冻性能研究[J]. 中外公路, 2020, 40(4): 281-285. SUN Lin. Study on salt-freezing resistance of cement concrete modified by nano-SiO2[J]. Journal of China & Foreign Highway, 2020, 40(4): 281-285. [14] AGGARWAL P, SINGH R P, AGGARWAL Y. Use of nano-silica in cement based materials—a review[J]. Cogent Engineering, 2015, 2(1): 1078018. [15] 付广宾,霍海滢.冬季施工要点及防冻剂对冬季混凝土的影响[J].中国金属通报,2020(4):276,278. FU Guangbin, HUO Haiying. Winter construction points and the effect of antifreeze on winter concrete[J]. China Metal Bulletin, 2020(4):276,278. [16] 边旭辉, 申爱琴, 连城, 等. 基于灰关联理论的玄武岩纤维混凝土孔与抗冻性能相关性研究[J]. 中外公路, 2022, 42(4): 192-198. BIAN Xuhui, SHEN Aiqin, LIAN Cheng, et al. Correlation study between pore structure and frost resistance of basalt fiber reinforced concrete based on grey correlation theory[J]. Journal of China & Foreign Highway, 2022, 42(4): 192-198. [17] JI L.Quality control of concrete construction in winter of high‑rise building[J].Engineering,2003. [18] FOLEY T,SCHEXNAYDER C.Placing winter concrete:Pearl harbor memorial bridge[J].Practice Periodical on Structural Design and Construction,2015,20(3):04014037. [19] CHOI H, ZHANG W Y, HAMA Y. Method for determining early-age frost damage of concrete by using air-permeability index and influence of early-age frost damage on concrete durability[J]. Construction and Building Materials, 2017, 153: 630-639. [20] 尹明, 白洪涛, 周吕. 负温混凝土防冻剂掺量确定的实验研究[J]. 科学技术与工程, 2014, 14(18): 290-294. YIN Ming, BAI Hongtao, ZHOU Lü. Experimental study on the determination method of negative temperature concrete antifreeze admixture[J]. Science Technology and Engineering, 2014, 14(18): 290-294. [21] 交通运输部公路科学研究院. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020[S]. 北京: 人民交通出版社有限公司, 2021. Research Institute of Highway Ministry of Transport.Testing Methods of Cement and Concrete for Highway Engineering: JTG 3420—2020[S]. Beijing: China Communications Press Co.,Ltd., 2021. [22] 白宪臣. 土木工程材料[M]. 北京: 中国建筑工业出版社, 2011. BAI Xianchen. Civil engineering materials[M]. Beijing: China Architecture & Building Press, 2011.

Share

COinS