•  
  •  
 

Abstract

In view of the factors influencing the temperature field of CRC+AC composite road surfaces, this paper analyzed the temperature field distribution and influencing factors of CRC+AC composite road surface structures based on the meteorology and heat transfer theories, and conducted 3D solid modeling and numerical simulation by adopting Abaqus finite element software. The results show that in certain conditions, the deeper distance from the road surface leads to smaller temperature change of the road surface structure. When the depth exceeds 0.6 m, the temperature is almost unchanged and has little difference with the outside ambient temperature. By increasing the thermal conductivity, heat capacity, and road surface emissivity of asphalt road surfaces, and reducing the absorption rate of solar radiation, the road surface temperature at high temperatures and the harm of rutting and cracking of the road surfaces can be decreased. In both low temperature at night and high temperature during the day, changing the thickness of the asphalt layer does not have much effect on the road surface temperature, but in the high temperature during the day, the temperature in the surface layer decreases with the increasing thickness of the asphalt layer, with a large decrease range. The results can provide both technical support for the prevention of asphalt cracking and rutting in CRC+AC composite road surfaces, and theoretical basis for material selection and structural design.

Publication Date

9-14-2023

DOI

10.14048/j.issn.1671-2579.2023.04.009

First Page

52

Last Page

58

Submission Date

March 2025

Reference

[1] 朱春福, 程培峰, 赵广宇. 荷载与温度耦合作用下“白加黑” 复合式路面沥青加铺层的受力分析[J]. 中外公路, 2020, 40(2): 40-45. ZHU Chunfu, CHENG Peifeng, ZHAO Guangyu. Stress analysis of additional pavement of “white and black” composite pavement under coupling of load and temperature[J]. Journal of China & Foreign Highway, 2020, 40(2): 40-45. [2] 肖润谋, 李彬, 陈荫三. 2013年中国高速公路网运输状态[J]. 交通运输工程学报, 2014, 14(6): 67-73+99. XIAO Runmou, LI Bin, CHEN Yinsan. Transportation status of Chinese expressway network in 2013[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 67-73+99. [3] 李盛, 刘朝晖, 李宇峙. CRC+AC复合式路面结构层厚度对温度效应及车辙变形的影响[J]. 中国公路学报, 2012, 25(1): 21-28. LI Sheng, LIU Zhaohui, LI Yuzhi. Influence of structure layer thickness of CRC+AC composite pavement on temperature effect and rutting deformation[J]. China Journal of Highway and Transport, 2012, 25(1): 21-28. [4] 陶泽峰, 钱劲松, 凌建明, 等. 湿度影响下的重载交通沥青路面动力响应[J]. 同济大学学报(自然科学版), 2016, 44(5): 734-739. TAO Zefeng, QIAN Jinsong, LING Jianming, et al. Dynamic response of heavy-duty asphalt pavement affected by moisture[J]. Journal of Tongji University (Natural Science), 2016, 44(5): 734-739. [5] 刘朝晖, 王骁帆, 李盛, 等. 温缩和干缩对连续配筋混凝土路面纵向配筋的影响[J]. 中国公路学报, 2016, 29(11): 1-9. LIU Zhaohui, WANG Xiaofan, LI Sheng, et al. Influences of thermal and drying shrinkages on longitudinal reinforcement in continuously reinforced concrete pavement[J]. China Journal of Highway and Transport, 2016, 29(11): 1-9. [6] 李盛, 李宇峙, 刘朝晖. 刚柔复合式路面沥青层温度疲劳损伤及开裂研究[J]. 工程力学, 2013, 30(10): 122-127. LI Sheng, LI Yuzhi, LIU Zhaohui. Research on temperature fatigue damage and cracking in asphalt layer of rigid-flexible composite pavement[J]. Engineering Mechanics, 2013, 30(10): 122-127. [7] 孙雅珍, 刘畅, 王金昌, 等. 复合式路面层间界面力学特性试验研究[J]. 公路, 2016, 61(4): 36-40. SUN Yazhen, LIU Chang, WANG Jinchang, et al. Experimental study on mechanical characteristics of interlayer interface of composite pavements[J]. Highway, 2016, 61(4): 36-40. [8] 骆成. 连续配筋混凝土路面温度场研究及设计参数敏感性分析[J]. 中外公路, 2020, 40(3): 76-80. LUO Cheng. Sensitivity analysis of design parameters and temperature field for continuously reinforced concrete pavement[J]. Journal of China & Foreign Highway, 2020, 40(3): 76-80. [9] 苏宇, 杨文臣, 田毕江, 等. 海南高速公路沥青路面路表温度分布规律与预估模型[J]. 中外公路, 2018, 38(6): 53-57. SU Yu, YANG Wenchen, TIAN Bijiang, et al. Distribution regularity and prediction model of surface temperature of asphalt pavement in Hainan highway[J]. Journal of China & Foreign Highway, 2018, 38(6): 53-57. [10] 康晓革, 郑耀, 张慧梅. 基于连续变温的沥青路面温度场与应力场有限元分析[J]. 公路, 2020, 65(1): 191-195. KANG Xiaoge, ZHENG Yao, ZHANG Huimei. Finite element analysis of temperature and stress fields of asphalt pavement based on continuous variable temperature[J]. Highway, 2020, 65(1): 191-195. [11] CEYLAN H, GOPALAKRISHNAN K, LYTTON R L. Neural networks modeling of stress growth in asphalt overlays due to load and thermal effects during reflection cracking[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 221-229. [12] LI S, LIU Z H. Study on crack extension of the ac layer of crc+ac composite pavement[J]. Mechanika, 2012, 18(2): 141‑147. [13] BARBER E S. Calculation of maximum pavement temperatures from weather reports[J]. Highway Research Board Bulletin, 1957(168):1‑8. [14] HERMANSSON Å. Simulation model for calculating pavement temperatures including maximum temperature[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000, 1699(1): 134-141. [15] PARK D Y, BUCH N, CHATTI K. Effective layer temperature prediction model and temperature correction via falling weight deflectometer deflections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1764(1): 97-111. [16] 韩子东. 道路结构温度场研究[D]. 西安: 长安大学, 2001. HAN Zidong. Study on temperature field of road structure[D]. Xi’an: Changan University, 2001. [17] 黄立葵, 贾璐, 万剑平, 等. 沥青路面高温温度场数值分析与试验验证[J]. 岩土力学, 2006, 27(S1): 40-45. HUANG Likui, JIA Lu, WAN Jianping, et al. Numerical analysis and experimental validation of high temperature fields in asphalt pavements[J]. Rock and Soil Mechanics, 2006, 27(S1): 40-45. [18] 马正军, 谈至明, 钱晨. 沥青路面面层温度分布规律[J]. 中国公路学报, 2014, 27(4): 9-15. MA Zhengjun, TAN Zhiming, QIAN Chen. Distribution law of asphalt pavement temperature[J]. China Journal of Highway and Transport, 2014, 27(4): 9-15.

Share

COinS