Abstract
In the process of highway tunnel construction,the stability of surrounding rock has a great impact on tunnel construction.Therefore,the monitoring measurement and accurate prediction of surrounding rock deformation of highway tunnels are the keys to ensuring the safety of tunnel construction.In view of the low prediction accuracy and poor generalization ability of tunnel surrounding rock deformation,this paper proposed a Bayesian (Bayes )-based method to optimize the long-term and short-term memory (LSTM ) network.The method first preprocessed the original monitoring data of crown settlement and peripheral convergence,then constructed the initial LSTM model of crown settlement and peripheral convergence of highway tunnels,and used the super parameters in the Bayes optimization model to obtain the prediction results.The model was used to predict the crown settlement and peripheral convergence of a highway tunnel,and the prediction results were compared with convolutional neural network (CNN ) and support vector regression (SVR ) using root mean square error as the evaluation index.When the crown settlement was predicted,the average prediction accuracy of the Bayes-LSTM model was 1.0 and 1.26 higher than that of the CNN and SVR models,respectively.When peripheral convergence was predicted,the average accuracy of the Bayes-LSTM model was 0.3 and 0.32 higher than that of CNN and SVR,respectively.The results show that the Bayes-LSTM model has higher prediction accuracy,and it can judge and choose the historical information in the process of model training,which greatly improves the efficiency of time series data processing.The model provides a new idea for the prediction of surrounding rock deformation of highway tunnels.
Publication Date
3-18-2024
DOI
10.14048/j.issn.1671-2579.2024.01.023
First Page
166
Last Page
176
Submission Date
February 2025
Recommended Citation
Zhi, LIU; Xinyu, LI; Zhen, LI; Xianguang, KONG; and Jiantao, CHANG
(2024)
"Prediction Method of Surrounding Rock Deformation of Highway Tunnels Based on Bayes‑LSTM,"
Journal of China & Foreign Highway: Vol. 44:
Iss.
1, Article 23.
DOI: 10.14048/j.issn.1671-2579.2024.01.023
Available at:
https://zwgl1980.csust.edu.cn/journal/vol44/iss1/23
Reference
[1]张碧 .基于小波变换的隧道大变形组合预测方法 [J].长江科学院院报 ,2017 ,34(7): 94-98,105.ZHANG Bi .Combinatorial forecasting method for large deformation of tunnel based on wavelet transform [J].Journal of Yangtze River Scientific Research Institute ,2017 ,34(7): 94-98,105.
[2]叶超 .基于 BP神经网络修正的自适应灰色模型的隧道变形预测研究 [J].铁道标准设计 ,2017 ,61(11): 76-81.YE Chao .Research on deformation prediction of tunnel based on adaptive grey model of BP neural network correction [J].Railway Standard Design ,2017 ,61(11):76-81.
[3]张云鹏 ,李利平 ,贺鹏 ,等.隧道围岩大变形高斯过程回归预 测 模 型及其工程应用 [J].科学技术与工程 ,2018 ,18(1):122-127.ZHANG Yunpeng ,LI Liping ,HE Peng ,et al .Gaussian process regression prediction model for the big deformation of the tunnel rock and its application [J].Science Technology and Engineering ,2018 ,18(1): 122-127.
[4]孙柏林 ,乔松林 ,张乾青 ,等.隧道拱顶沉降及周边收敛动态 过 程 预 测 的 Richards 时 间 函 数 模 型 [J].公 路 工 程 ,2015 ,40(6): 114-118.SUN Bolin ,QIAO Songlin ,ZHANG Qianqing ,et al .Richards time function model of dynamic process prediction for tunnel vault sedimentation and peripheral convergence [J].Highway Engineering ,2015 ,40(6):114-118.
[5]曹孟潇 ,吕文黔 ,张金瑞 ,等.基于马尔可夫链修正的神经网 络 隧 道 围 岩 变 形 预 测 [J].中 国 水 运 (下 半 月 ),2019 ,19(2): 191-193.CAO Mengxiao ,LYU Wenqian ,ZHANG Jinrui ,et al .Deformation prediction of tunnel surrounding rock based on neural network modified by Markov chain [J].China Water Transport ,2019 ,19(2): 191-193.
[6]冯永年 .宴家隧道围岩收敛灰色系统预测模型 [J].公路交通科技 (应用技术版 ),2015 ,11(3): 169-172.FENG Yongnian .Grey system prediction model of surrounding rock convergence in Yanjia tunnel [J].Journal of Highway and Transportation Research and Development (Application Technology Edition ),2015 ,11(3):169-172.
[7]廖烟开 ,郭德平 ,刘志强 ,等.隧道周边应变与挤压因子法在 隧 道 围 岩 大 变 形 预 测 中 的 应 用 [J].现 代 隧 道 技 术 ,2020 ,57(4): 20-26.LIAO Yankai ,GUO Deping ,LIU Zhiqiang ,et al.Application of peripheral strain and squeezing factor methods in the prediction of large deformation of tunnel surrounding rocks[J].Modern Tunnelling Technology ,2020 ,57(4): 20-26.
[8]文明 ,张顶立 ,房倩 ,等.隧道围岩变形的非线性自回归时间序列预测方法研究 [J].北京交通大学学报 ,2017 ,41(4): 1-7.WEN Ming ,ZHANG Dingli ,FANG Qian ,et al.Research on nonlinear auto regressive time series method for predicting deformation of surrounding rock in tunnel [J].Journal of Beijing Jiaotong University ,2017 ,41(4): 1-7.
[9]周冠南 ,孙玉永 ,贾蓬 .基于遗传算法的 BP神经网络在隧道围岩参数反演和变形预测中的应用 [J].现代隧道技术 ,2018 ,55(1): 107-113.ZHOU Guannan ,SUN Yuyong ,JIA Peng .Application of genetic algorithm based BP neural network to parameter inversion of surrounding rock and deformation prediction[J].Modern Tunnelling Technology ,2018 ,55(1): 107-113.
[10]刘艳明 .石牛岭隧道地表坍塌原因分析及处理方案探讨[J].中外公路 ,2018 ,38(3): 228-231.LIU Yanming .The cause analysis and treatment scheme of surface collapse in Shi-Niu-ling tunnel [J].Journal of China & Foreign Highway ,2018 ,38(3): 228-231.
[11]李 贤 ,蔡 林 真 .某 软 岩 隧 道 变 形 规 律 和 二 衬 最 佳 支 护 时机选择研究 [J].中外公路 ,2019 ,39(3): 189-192.LI Xian ,CAI Linzhen .Research on deformation rule and optimal lining time of a tunnel in soft rock [J].Journal of China & Foreign Highway ,2019 ,39(3): 189-192.
[12]SHI S S ,ZHAO R J ,LI S C ,et al .Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application [J].Tunnelling and Underground Space Te chnology ,2019 ,90: 1-11.
[13]曾怀宇 .基于粗糙集综合权重法的公路隧道围岩等级预测方法研究 [J].路基工程 ,2018 (4): 69-74.ZENG Huaiyu .Study on prediction methods of highway tunnel surrounding rock class based on rough set comprehensive weight method [J].Subgrade Engineering ,2018 (4):69-74.
[14]王开洋 ,尚彦军 ,何万通 ,等.深埋公路隧道围岩大变形预测研究 [J].地下空间与工程学报 ,2015 ,11(5): 1164 -1174 .WANG Kaiyang ,SHANG Yanjun ,HE Wantong ,et al .Prediction of surrounding rock deformation in deep highway tunnel [J].Chinese Journal of Underground Space and Engineering ,2015 ,11(5): 1164 -1174 .
[15]PAN Y ,CHEN L ,WANG J ,et al .Research on deformation prediction of tunnel surrounding rock using the model combining firefly algorithm and nonlinear auto-regressive dynamic neural network [J].Engineering with Computers ,2021 ,37(2): 1443 -1453 .
[16]黄 永 红 .基 于 灰 色 时 间 序 列 组 合 的 隧 道 变 形 预 测 研 究[J].城市勘测 ,2016 (6): 127-130.HUANG Yonghong .Deformation prediction of tunnel surrounding rock based on grey time series combined model [J].Urban Geotechnical Investigation & Surveying ,2016 (6): 127-130.
[17]杨背背 ,殷坤龙 ,杜娟 .基于时间序列与长短时记忆网络的 滑 坡 位 移 动 态 预 测 模 型 [J].岩 石 力 学 与 工 程 学 报 ,2018 ,37(10): 2334 -2343 .YANG Beibei ,YIN Kunlong ,DU Juan .A model for predicting landslide displacement based on time series and long and short term memory neural network [J].Chinese Journal of Rock Mechanics and Engineering ,2018 ,37(10): 2334 -2343 .
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons