•  
  •  
 

Corresponding Author

杨忠民,男,博士(后),副研究员.E-mail:yangzhongmin2010@163.com

Abstract

Real-time detection and timely treatment of highway cracks are crucially fundamental for vehicle safety.Rapid identification and comparison of cracks is a new method for monitoring the development and changes of geological disasters especially when they induce cracks.Therefore,this study proposed an intelligent recognition method of highway cracks based on semantic segmentation,establishing a model with dataset,neural network,calculation parameters,and evaluation indicators to rapidly identify the cracks.The results show that,firstly,when the neural network Attention U-net built in this study semantically segments highway cracks,the binary cross loss function value and accuracy rate reach 0.008 7 and 0.998 4,respectively.Secondly,compared with traditional algorithms,the semantic segmentation method shows higher accuracy,reliability,and superiority in intelligent recognition of highway cracks,with a Dice similarity coefficient of 0.978.Thirdly,the semantic segmentation method has better robustness and generalization ability to deal with brightness and noise.

Publication Date

10-28-2024

DOI

10.14048/j.issn.1671-2579.2024.05.027

First Page

241

Last Page

247

Submission Date

February 2025

Reference

[1]TALAB A M A ,HUANG Z C ,XI F ,et al.Detection crack in image using Otsu method and multiple filtering in image processing techniques [J].Optik ,2016 ,127(3): 1030 -1033 .
[2]WANG L T ,GU X Y ,LIU Z ,et al .Automatic detection of asphalt pavement thickness : A method combining GPR images and improved Canny algorithm [J].Measurement ,2022 ,196: 111248 .
[3]KANG C C ,WANG W J ,KANG C H .Image segmentation with complicated background by using seeded region growing [J].AEU - International Journal of Electronics and Communications ,2012 ,66(9): 767-771.
[4]KHERADMANDI N ,MEHRANFAR V .A critical review and comparative study on image segmentation-based techniques for pavement crack detection [J].Construction and Building Materials ,2022 ,321: 126162 .
[5]TOKHMECHI B ,MEMARIAN H ,NOUBARI H A ,et al .A novel approach proposed for fractured zone detection using petrophysical logs [J].Journal of Geophysics and Engineering ,2009 ,6(4): 365-373.
[6]ZHU J S ,SONG J B .Weakly supervised network based intelligent identification of cracks in asphalt concrete bridge deck [J].Alexandria Engineering Journal ,2020 ,59(3): 1307 -1317 .
[7]CUI X N ,WANG Q C ,DAI J P ,et al .Pixel-level intelligent recognition of concrete cracks based on DRACNN [J].Materials Letters ,2022 ,306: 130867 .
[8]苏卫国,王景霄 .基于 YOLO v 3深度学习算法的道路裂缝识别模型研究 [J].中外公路 ,2023 ,43(2) :58-63.SU Weiguo ,WANG Jingxiao .Research on road crack recognition model based on YOLO v 3 deep learning algorithm [J].Journal of China & Foreign Highway ,2023,43(2):58-63.
[9]TANG Y D ,HE L ,LU W ,et al .A novel approach for fracture skeleton extraction from rock surface images [J].International Journal of Rock Mechanics and Mining Sciences ,2021 ,142: 104732 .
[10]LIU X R ,WANG Y D ,YU Z J ,et al .Research on cracks image detection system for subway tunnel [C]//2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC ).Chongqing ,China .IEEE ,2018 : 188-192.
[11]CHEN J Y ,CHEN Y F ,COHN A G ,et al .A novel image-based approach for interactive characterization of rock fracture spacing in a tunnel face [J].Journal of Rock Mechanics and Geotechnical Engineering ,2022 ,14(4): 1077 -1088 .
[12]DONG S Q ,ZENG L B ,LYU W Y ,et al .Fracture identification by semi-supervised learning using conventional logs in tight sandstones of Ordos Basin ,China [J].Journal of Natural Gas Science and Engineering ,2020 ,76: 103131 .
[13]顾天纵 .基于深度学习的岩体裂隙图像识别及坐标提取[D].南京 : 南京理工大学 ,2021 .GU Tianzong .Image recognition of rock mass cracks based on deep learning and coordinate extraction [D].Nanjing : Nanjing University of Science and Technology ,2021 .
[14]吴琪 .基于卷积神经网络的滑坡边界与岩石裂隙智能识别[D].南昌 : 南昌大学 ,2022 .WU Qi .Intelligent recognition of landslide boundaries and rock crevices based on convolutional neural networks [D].Nanchang : Nanchang University ,2022 .
[15]张紫杉 ,王述红 ,王鹏宇 ,等.岩坡坡面裂隙网络智能识别与参数提取 [J].岩土工程学报 ,2021 ,43(12): 2240 -2248 .ZHANG Zishan ,WANG Shuhong ,WANG Pengyu ,et al .Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J].Chinese Journal of Geotechnical Engineering ,2021 ,43(12): 2240 -2248 .
[16]刘建华 ,董家修 ,王念念 ,等.基于 Crack Mask R-CNN 模型的路面裂缝像素级分割及测量算法应用分析 [J].中外公路 ,2023 ,43(5): 47-52.LIU Jianhua ,DONG Jiaxiu ,WANG Niannian ,et al .Analysis of pixel-level segmentation and measurement algorithm for pavement cracks based on Crack Mask R-CNN model [J].Journal of China & Foreign Highway ,2023 ,43(5): 47-52.
[17]薛文渲 ,刘建霞 ,刘然 ,等.改进 U型网络的眼底视网膜血管分割方法 [J].光学学报 ,2020 ,40(12): 1210001 .XUE Wenxuan ,LIU Jianxia ,LIU Ran ,et al .An improved method for retinal vascular segmentation in U-net [J].Acta Optica Sinica ,2020 ,40(12): 1210001 .
[18]ZHU Z F ,AN Q ,WANG Z C ,et al.ILU-Net : inception-Like U-Net for retinal vessel segmentation [J].Optik ,2022 ,260: 169012 .
[19]HAN J ,WANG Y ,GONG H .Fundus retinal vessels image segmentation method based on improved U-net [J].IRBM ,2022 ,43(6): 628-639.
[20]WANG H D ,XU G ,PAN X P ,et al .Attention-inception-based U-Net for retinal vessel segmentation with advanced residual [J].Computers & Electrical Engineering ,2022 ,98: 107670 .
[21]SHI Y ,CUI L M ,QI Z Q ,et al .Automatic road crack detection using random structured forests [J].IEEE Transactions on Intelligent Transportation Systems ,2016 ,17(12): 3434 -3445 .
[22]纪建兵 ,陈纾 ,杨媛媛 .双重降维通道注意力门控 U-Net的胰腺 CT分割 [J].中国生物医学工程学报 ,2023 ,42(3): 281-288.JI Jianbing ,CHEN Shu ,YANG Yuanyuan .Dual dimension reduction and channel attention gate U-shaped network for pancreatic CT segmentation [J].Chinese Journal of Biomedical Engineering ,2023 ,42(3): 281-288.

Share

COinS