Abstract
To obtain the reasonable parameters of a smoke exhaust shaft in a tunnel under different longitudinal slope conditions,the temperature,flow velocity,and smoke exhaust efficiency of the tunnel were taken as indexes,and the numerical model was established by using fire dynamics simulator (FDS ) software to study the influence of the longitudinal slope of the tunnel,shaft width,and shaft length on the ventilation and smoke exhaust in case of a fire.The results show that under the longitudinal slope conditions,with the increase in the shaft width and length,the maximum temperature in the tunnel decreases,and the smoke exhaust efficiency of the shaft increases.However,the influence of the shaft width on the maximum temperature and smoke exhaust efficiency is greater than that of the shaft length.There is a correlation between the longitudinal slope of the tunnel and the shaft width.When the shaft width is not greater than 4 m,the increase in the longitudinal slope can effectively reduce the temperature of the vault above the fire source.When the shaft width reaches 5 m,the increase in the longitudinal slope improves the smoke exhaust efficiency.In the positive slope direction,the increase in the longitudinal slope makes the flue gas move faster.Based on the research results and industry norms,this study suggests that the size of the shaft be appropriately increased under the premise of structural safety and the influence of the longitudinal slope of the tunnel be considered.
Publication Date
6-23-2025
DOI
10.14048/j.issn.1671-2579.2025.03.023
First Page
191
Last Page
198
Submission Date
August 2025
Recommended Citation
Tao, YANG; Yuekai, ZENG; Peijun, LI; Rui, REN; Min, DENG; and Aoyu, ZHANG
(2025)
"Study on Reasonable Parameters of Natural Smoke Exhaust Shafts in Tunnels with Different Longitudinal Slopes,"
Journal of China & Foreign Highway: Vol. 45:
Iss.
3, Article 23.
DOI: 10.14048/j.issn.1671-2579.2025.03.023
Available at:
https://zwgl1980.csust.edu.cn/journal/vol45/iss3/23
Reference
[1]曹正卯,张琦,陈建忠.羊鹿山隧道 20 MW 火灾全射流纵向 排 烟 全 比 尺 试 验 研 究 [J].重 庆 交 通 大 学 学 报 (自 然 科学版 ),2020,39(3):123-128.CAO Zhengmao,ZHANG Qi,CHEN Jianzhong.Full-scale experiment study on full-jet longitudinal smoke exhaust of 20 MW fire in yanglushan tunnel [J].Journal of Chongqing Jiaotong University (Natural Science ),2020,39(3):123-128.
[2]邓敏,闵泉,熊雅,等.基于流体力学相似理论的 “互补式 +排烟竖井 ” 组合通风模型试验研究 [J].中外公路,2021,41(1):190-196.DENG Min,MIN Quan,XIONG Ya,et al.Experimental study on combined ventilation of complementary and smoke exhaust shaft based on similarity theory of fluid mechanics [J].Journal of China & Foreign Highway,2021,41(1):190-196.
[3]彭锦志,徐志胜,倪天晓,等.公路隧道集中排烟系统流速分布规律数值模拟研究 [J].防灾减灾工程学报,2011,31(4):415-422.PENG Jinzhi,XU Zhisheng,NI Tianxiao,et al.Numerical simulation study on system velocity distribution law of central exhaust mode in highway tunnel [J].Journal of Disaster Prevention and Mitigation Engineering,2011,31(4):415-422.
[4]谢元一,张晓明,胡忠日,等.成都地铁浅埋区间隧道自然通 风 排 烟 方 式 的 热 烟 试 验 研 究 [J].消 防 科 学 与 技 术,2008,27(10):739-741.XIE Yuanyi,ZHANG Xiaoming,HU Zhongri,et al.The hot smoke test on nature smoke exhaust in Chendu Metro ’s shallow-burying intersectional tunnel [J].Fire Science and Technology,2008,27(10):739-741.
[5]LI Y Z,INGASON H.Overview of research on fire safety in underground road and railway tunnels [J].Tunnelling and Underground Space Technology,2018,81:568-589.
[6]YOON C H,KIM M S,KIM J.The evaluation of natural ventilation pressure in Korean long road tunnels with vertical shafts [J].Tunnelling and Underground Space Technology,2006,21(3/4):472.
[7]童艳,苏荣华,龚延风.竖井型自然通风公路隧道气流与污 染 物 分 布 的 影 响 因 素 研 究 [J].建 筑 科 学,2011,27(6):92-98.TONG Yan,SU Ronghua,GONG Yanfeng.Study on influence factors about airflow and pollution distribution for road tunnels with shafts under natural ventilation condition [J].Building Science,2011,27(6):92-98.
[8]郭庆华,朱合华,闫治国.顶部开口自然通风隧道火灾竖井 排 烟 效 率 研 究 [J].消 防 科 学 与 技 术,2021,40(5):661-664.GUO Qinghua,ZHU Hehua,YAN Zhiguo.Studies on the smoke exhaust efficiency of the vertical shaft in naturally ventilated tunnel fires [J].Fire Science and Technology,2021,40(5):661-664.
[9]HE L,XU Z S,MARKERT F,et al.Experimental study of heat exhaust efficiency with natural ventilation in tunnel fire:Impact of shaft height and heat release rate [J].Journal of Wind Engineering and Industrial Aerodynamics,2020,201:104173.
[10]YAO Y Z,ZHANG S G,SHI L,et al.Effects of shaft inclination angle on the capacity of smoke exhaust under tunnel fire [J].Indoor and Built Environment,2019,28(1):77-87.
[11]CONG H Y,BI M S,BI Y B,et al.Experimental studies on the smoke extraction performance by different types of ventilation shafts in extra-long road tunnel fires [J].Tunnelling and Underground Space Technology,2021,115:104029.
[12]CONG H Y,BI M S,REN J J,et al.Experimental studies on the smoke extraction performance by natural ventilation with a board-coupled shaft in a deep buried tunnel [J].Tunnelling and Underground Space Technology,2020,106:103613.
[13]ZHAO S Z,XU L,OBADI I,et al.Plug-holing height and complete plug-holing phenomenon in naturally ventilated tunnel fires with vertical shaft [J].Tunnelling and Underground Space Technology,2021,107:103631.
[14]GUO Q H,LI Y Z,INGASON H,et al.Theoretical and numerical study on mass flow rates of smoke exhausted from short vertical shafts in naturally ventilated urban road tunnel fires [J].Tunnelling and Underground Space Technology,2021,111:103782.
[15]WANG Z,DENG W H,ZHOU M,et al.Evaluation of fire smoke and heat exhaust performance of shafts by natural venting in tunnels [J].Tunnelling and Underground Space Technology,2023,131:104817.
[16]李 钰,付 玉.竖 井 截 面 尺 寸 对 烟 囱 效 应 极 限 高 度 的 影 响研究 [J].消防科学与技术,2020,39(5):624-627.LI Yu,FU Yu.Influence of cross section size on limit height of chimney effect [J].Fire Science and Technology,2020,39(5):624-627.
[17]韩见云,纪杰,王培永.竖井横截面积对隧道自然排烟效果影响的实验研究 [J].火灾科学,2013,22(1):36-43.HAN Jianyun,JI Jie,WANG Peiyong.Experimental investigation on influence of shaft cross-sectional area on natural ventilation in urban road tunnel fires [J].Fire Safety Science,2013,22(1):36-43.
[18]郭庆华,史建峰,闫治国,等.火源 ‒竖井间距对自然通风隧 道 火 灾 烟 气 流 动 特 征 的 影 响 [J].消 防 科 学 与 技 术,2021,40(12):1739 -1743.GUO Qinghua,SHI Jianfeng,YAN Zhiguo,et al.Impact of the fire-shaft distances on the smoke flow properties in naturally ventilated tunnel fires [J].Fire Science and Technology,2021,40(12):1739 -1743.
[19]张 荣 帅,李 思 成.纵 向 通 风 与 坡 度 对 隧 道 竖 井 排 烟 影 响数值模拟 [J].消防科学与技术,2019,38(3):359-363.ZHANG Rongshuai,LI Sicheng.Numerical simulation of the impact of longitudinal ventilation and slope on shaft smoke exhaust in tunnel [J].Fire Science and Technology,2019,38(3):359-363.
[20]姜童辉,丛海勇,孔祥晓,等.纵向通风对隧道竖井排烟影响的模拟研究 [J].火灾科学,2018,27(1):14-22.JIANG Tonghui,CONG Haiyong,KONG Xiangxiao,et al.Simulation study on effects of longitudinal ventilation on smoke exhausting performance of tunnel shafts [J].Fire Safety Science,2018,27(1):14-22.
[21]郭霄,吕建伟,谈祥君,等.城市分岔隧道火灾拱顶烟气蔓延 特 性 的 模 拟 研 究 [J/OL ].中 外 公 路,1-11[2025 -01-22].http://kns.cnki.net/kcms/detail/ 43.1363.U.20250122.1446.004.html.GUO Xiao,LYU Jianwei,TAN Xiangjun,et al.Simulation study on smoke spread characteristics of fire vault in urban bifurcated tunnel [J/OL ].Journal of China & Foreign Highway,1-11[2025 -01-22].http://kns.cnki.net/kcms/detail/43.1363.U.20250122.1446.004.html.
[22]招商局重庆交通科研设计院有限公司.公路隧道设计规范 第一册 土建工程:JTG 3370.1—2018 [S].北京:人民交通出版社股份有限公司,2019.China Merchants Chongqing Communications Technology Research & Design Institute Co.,Ltd..Specifications for design of highway tunnels section 1 civil engineering:JTG 3370.1—2018 [S].Beijing:China Communications Press Co.,Ltd.,2019.
[23]ZHANG X C,YANG M J,WANG J,et al.Effects of computational domain on numerical simulation of building fires [J].Journal of Fire Protection Engineering,2010,20(4):225-251.
[24]高恒潮,陶家清,陈训,等.公路隧道断面横向双火源火灾烟 气 控 制 风 速 研 究 [J/OL ].中 外 公 路,1-9[2025 -01-16].http://kns.cnki.net/kcms/detail/ 43.1363.U.20250116.1339.004.html.GAO Hengchao,TAO Jiaqing,CHEN Xun,et al.Study on controlling wind speed of fire smoke with transverse double fire sources in highway tunnel section [J/OL ].Journal of China & Foreign Highway,1-9[2025 -01-16].http://kns.cnki.net/kcms/detail/ 43.1363.U.20250116.1339.004.html.
[25]TONG Y,SHI M H,GONG Y F,et al.Full-scale experimental study on smoke flow in natural ventilation road tunnel fires with shafts [J].Tunnelling and Underground Space Technology,2009,24(6):627-633.
[26]TONG Y,ZHAI J,WANG C S,et al.Possibility of using roof openings for natural ventilation in a shallow urban road tunnel [J].Tunnelling and Underground Space Technology,2016,54:92-101.
[27]YAO Y Z,LI Y Z,INGASON H,et al.Numerical study on overall smoke control using naturally ventilated shafts during fires in a road tunnel [J].International Journal of Thermal Sciences,2019,140:491-504.
[28]何坤.隧道多火源火灾特性及竖井自然排烟研究 [D].合肥:中国科学技术大学,2021.HE Kun.Characteristics of multiple fires in the tunnel and smoke exhaustion using naturally ventilated shafts [D].Heifei:University of Science and Technology of China,2021.
[29]刘洋.顶部竖井城市隧道火灾模型实验与数值模拟研究[D].青岛:中国石油大学 (华东 ),2015.LIU Yang.Study on small-scale experiment and numerical simulation for fires in urban tunnel with vertical shafts [D].Qingdao:China University of Petroleum (East China ),2015.
[30]REN R,ZHOU H,HU Z,et al.Statistical analysis of fire accidents in Chinese highway tunnels 2000 ‒2016 [J].Tunnelling and Underground Space Technology,2019,83:452-460.
[31]MCGRATTAN K,HOSTIKKA S,MCDERMOTT R,et al.Fire dynamics simulator user ’s guide [M].Gaithersburg:National Institute of Standards and Technology Special Publication 1019,2019.
[32]谢飞,董启伟,常默宁,等.火源与排烟竖井的相对位置对重点排烟效果的影响研究 [J].消防科学与技术,2021,40(2):213-216.XIE Fei,DONG Qiwei,CHANG Moning,et al.Study on the influence of the relative position of fire source and smoke exhaust shaft on point smoke exhaust effect [J].Fire Science and Technology,2021,40(2):213-216.
[33]任锐,李杰,王亚琼.隧道通风系统 90°弯折处导流板设置研究 [J].中国公路学报,2018,31(8):137-144.REN Rui,LI Jie,WANG Yaqiong.Study of a tunnel ventilation system having guide plates in the 90° bend of the air duct [J].China Journal of Highway and Transport,2018,31(8):137-144.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons