Abstract
To address the issues of overfitting,low computational speed,and insufficient target information extraction in pavement crack segmentation tasks,this study proposed a Swin-U network model based on the U-Net architecture.The model adopted the Swin-Transformer as the feature extraction module to enhance the model ’s fitting capability and enable more accurate crack feature extraction,thereby enhancing segmentation accuracy.Additionally,a stable loss function,Focal Loss,was introduced to improve the accuracy of target segmentation.Experiment results on a proprietary pavement crack dataset show that the Swin-U network model achieves pixel-level segmentation of crack images and significantly outperforms the traditional U-Net.On the test set,it improves the intersection over union and F 1 score by 25.00% and 27.61%,respectively.This improved model not only provides more reliable technical support for road maintenance decision-making but also offers a reference for the optimization of pavement crack segmentation methods.
Publication Date
6-23-2025
DOI
10.14048/j.issn.1671-2579.2025.03.005
First Page
37
Last Page
45
Submission Date
August 2025
Recommended Citation
Hua, WANG; Liangcai, WANG; Feng, XIONG; and Jing, HU
(2025)
"Research on Pavement Crack Segmentation Based on Swin-U,"
Journal of China & Foreign Highway: Vol. 45:
Iss.
3, Article 5.
DOI: 10.14048/j.issn.1671-2579.2025.03.005
Available at:
https://zwgl1980.csust.edu.cn/journal/vol45/iss3/5
Reference
[1]李海丰,吴治龙,聂晶晶,等.基于深度图像的机场道面裂缝 自 动 检 测 算 法 [J].交 通 运 输 工 程 学 报,2020,20(6):250-260.LI Haifeng,WU Zhilong,NIE Jingjing,et al.Automatic crack detection algorithm for airport pavement based on depth image [J].Journal of Traffic and Transportation Engineering,2020,20(6):250-260.
[2]WANG K C P,LI Q,GONG W G.Wavelet-based pavement distress image edge detection with à trous algorithm [J].Transportation Research Record:Journal of the Transportation Research Board,2007,2024 (1):73-81.
[3]宰柯楠,徐江峰.基于遗传算法和简化 PCNN 的裂缝检测方法 [J].计算机应用研究,2017,34(6):1885 -1888.ZAI Kenan,XU Jiangfeng.Method of crack detection based on genetic algorithm and simplified pulse coupled neural network [J].Application Research of Computers,2017,34(6):1885 -1888.
[4]张仙艳.数字图像处理在裂缝 识别与检测中的应用 [D].西安:长安大学,2013.ZHANG Xianyan.Application of digital image processing in crack identification and detection [D].Xi’an:Changan University,2013.
[5]苏卫国,王景霄.基于 YOLO v 3深度学习算法的道路裂缝识别模型研究 [J].中外公路,2023,43(2):58-63.SU Weiguo,WANG Jingxiao.Research on road crack recognition model based on YOLO v 3 deep learning algorithm [J].Journal of China & Foreign Highway,2023,43(2):58-63.
[6]SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[7]HE K,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(2):386-397.
[8]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architectur e for image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481 -2495.
[9]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[J].Medical Image Computing and Computer-Assisted Intervention:Munich,2015,9351:234-241.
[10]CHEN T Y,CAI Z H,ZHAO X,et al.Pavement crack detection and recognition using the architecture of segnet[J].Journal of Industrial Information Integration,2020,18:100144.
[11]LIU J,YANG X,LAU S,et al.Automated pavement crack detection and segmentation based on two-step convolutional neural network [J].Computer-Aided Civil and Infrastructure Engineering,2020,35(11):1291 -1305.
[12]CHA Y J,CHOI W,BÜYÜKÖZTÜRK O.Deep learning-based crack damage detection using convolutional neural networks [J].Computer-Aided Civil and Infrastructure Engineering,2017,32(5):361-378.
[13]FEI Y,WANG K C P,ZHANG A,et al.Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V [J].IEEE Transactions on Intelligent Transportation Systems,2020,21(1):273-284.
[14]章世祥,张汉成,李西芝,等.基于机器视觉的路面裂缝病害多目标识别研究 [J].公路交通科技,2021,38(3):30-39.ZHANG Shixiang,ZHANG Hancheng,LI Xizhi,et al.Study on multi-objective identification of pavement cracks based on machine vision [J].Journal of Highway and Transportation Research and Development,2021,38(3):30-39.
[15]刘 建 华,董 家 修,王 念 念,等.基 于 Crack Mask R-CNN 模型的路面裂缝像素级分割及测量算法应用分析 [J].中外公路,2023,43(5):47-52.LIU Jianhua,DONG Jiaxiu,WANG Niannian,et al.Analysis on application of pixel-level segmentation and measurement algorithm road pavement cracks based on Crack Mask R-CNN model [J].Journal of China & Foreign Highway,2023,43(5):47-52.
[16]高亮,饶法强,杨忠民,等.基于语义分割的公路路面裂缝智能识别技术研究 [J].中外公路,2024,44(5):241-247.GAO Liang,RAO Faqiang,YANG Zhongmin,et al.Intelligent recognition technology of highway cracks based on semantic segmentation [J].Journal of China & Foreign Highway,2024,44(5):241-247.
[17]WOJCIECH Z,ILYA S,ORIOL V.Recurrent neural network regularization [J].Computer Science,2014:1-8.
[18]CRESWELL A,WHITE T,DUMOULIN V,et al.Generative adversarial networks:An overview [J].IEEE Signal Processing Magazine,2018,35(1):53-65.
[19]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need [J].Learning,2017 (5).
[20]LIU Z,LIN Y T,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows [C]//Montreal:CVF International Conference on Computer Vision (ICCV ),2021.
[21]CAO H,WANG Y Y,CHEN J,et al.Swin-Unet:Unet-like pure transformer for medical image segmentation [M].New York:Lecture Notes in Computer Science,2023.
[22]谭云峰,刘昆,莫洪柳,等.基于优化 U-Net 的路面裂缝分割 及 其 影 响 因 素 研 究 [J].公 路 交 通 科 技,2023,40(12):17-25.TAN Yunfeng,LIU Kun,MO Hongliu,et al.Study on pavement crack segmentation and its influencing factors based on optimized U-Net [J].Journal of Highway and Transportation Research and Development,2023,40(12):17-25.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons