•  
  •  
 

Abstract

Semi-flexible pavement materials have significant differences in tension and compression.If the mechanical response analysis of pavement structures is conducted by using the traditional linear elastic theory with a single modulus,there will be a considerable deviation from actual situations.To analyze and optimize semi-flexible pavement structures,this paper compared the changes in key mechanical responses of pavement structures under six different semi-flexible layer positions and thickness combinations based on the double modulus theory.The results show that there is a significant difference in the calculation results of key mechanical responses of the pavement based on the double modulus theory and the single modulus theory,with the difference in the maximum longitudinal tensile strain of the pavement being the most significant (over 60%).Compared to other layer combinations,when the upper or middle layer is composed of a semi-flexible pavement material,the surface deflection is larger,and the overall stiffness of the pavement structure is smaller.When the middle-lower,lower,or upper-middle-lower layers contain semi-flexible pavement materials,the tensile stress at the bottom of the lower layer is high,which makes it prone to cracking.When the middle-upper layers contain semi-flexible pavement materials,the critical mechanical response is relatively small,and it is recommended that the upper-middle layer be the optimal application layer.A model for the relationship between the key mechanical responses and the thickness of the semi-flexible layer was established.The maximum tensile stress on the road surface is most significantly affected by the thickness of the semi-flexible layer (up to 64%).When the semi-flexible material is applied to the upper-middle layers,the optimal thickness range is 10–12 cm.The research results can provide reference for the design of semi-flexible pavement structures considering the differences in tension and compression.

Publication Date

6-23-2025

DOI

10.14048/j.issn.1671-2579.2025.03.009

First Page

74

Last Page

82

Submission Date

August 2025

Reference

[1]赵楷文,张洪伟,全蔚闻,等.沥青路面结构设计指标优化及合理厚度探究 [J].公路交通科技,2022,39(6):9-16.ZHAO Kaiwen,ZHANG Hongwei,QUAN Weiwen,et al.Optimization of design indicators and exploration of reasonable thickness of asphalt pavement structure [J].Journal of Highway and Transportation Research and Development,2022,39(6):9-16.
[2]梁波,张海涛,刘政,等.纤维改性沥青混合料性能研究进展[J].中外公路,2023,43(3):1-16.LIANG Bo,ZHANG Haitao,LIU Zheng,et al.Research progress on properties of fiber modified asphalt mixture[J].Journal of China & Foreign Highway,2023,43(3):1-16.
[3]LINGT Q,ZHAO Z J,XIONG C H,et al.2009 the application of semi-flexible pavement on heavy traffic roads [J].Journal of building Materials,2009 (2):211-217.
[4]郑 晓 光,吴 立 报,水 亮 亮.高 性 能 灌 注 式 半 柔 性 路 面 材料 的 路 用 性 能 [J].建 筑 材 料 学 报,2023,26(6):638-643,652.ZHENG Xiaoguang,WU Libao,SHUI Liangliang.Road performance of high performance pouring semi-flexible pavement material [J].Journal of Building Materials,2023,26(6):638-643,652.
[5]ANS K,AIC F,REND Y,et al.Laboratory and field evaluation of a novel cement grout asphalt composite [J].Journal of Materials in Civil Engineering,2018,30(8):04018179
[6]吴正光,董虎,吴帮伟,等.地聚合物灌浆料对半柔性路面的性能影响 [J].混凝土,2023 (1):188-192.WU Zhengguang,DONG Hu,WU Bangwei,et al.Effect of geopolymer grouting material on performance of semi flexible pavement [J].Concrete,2023 (1):188-192.
[7]迟凤霞,王洋洋,严守靖,等.纳米 TiO 2负载方式对半柔性路 面 的 路 用 性 能 影 响 研 究 [J].中 外 公 路,2020,40(6):58-61.CHI Fengxia,WANG Yangyang,YAN Shoujing,et al.Study on influence of nano-TiO 2 paving method on road performance of semi-flexible pavement [J].Journal of China & Foreign Highway,2020,40(6):58-61.
[8]丘愉庄,蔡旭,肖汉.掺ECC 砂浆半柔性路面材料自愈合耐久性能研究 [J].公路,2020,65(10):1-5.QIU Yuzhuang,CAI Xu,XIAO Han.Research on self-healing durability of semi-flexible pavement materials grouted with ECC mortar [J].Highway,2020,65(10):1-5.
[9]刘朝晖,黄优,余时清,等.刚柔复合式路面结构与材料及发展趋势 [J].中外公路,2024,44(2):27-53.LIU Zhaohui,HUANG You,YU Shiqing,et al.Structure and material of rigid-flexible composite pavements and development [J].Journal of China & Foreign Highway,2024,44(2):27-53.
[10]蔡玉斌,龚明辉,熊子佳,等.半柔性路面模量特性研究 [J].中外公路,2023,43(1):52-56.CAI Yubin,GONG Minghui,XIONG Zijia,et al.Study on modulus characteristics of semi-flexible pavement [J].Journal of China & Foreign Highway,2023,43(1):52-56.
[11]王世奇.半柔性路面的疲劳开裂行为研究 [D].南京:东南大学,2021.WANG Shiqi.Investigation on fatigue cracking behavior of semi-flexible panement [D].Nanjing:Southeast University,2021.
[12]蔡旭.沥青路面抗车辙性能评价及结构优化 [D].广州:华南理工大学,2013.CAI Xu.Evaluation of rutting resistance and structural optimization of asphalt pavement [D].Guangzhou:South China University of Technology,2013.
[13]何伟南,陈海峰,周杰,等.碎石化水泥混凝土路面加铺半柔性材料结构设计研究 [J].公路,2020,65(2):45-49.HE Weinan,CHEN Haifeng,ZHOU Jie,et al.Structural design of semi-flexible materials for rubblization cement concrete pavement [J].Highway,2020,65(2):45-49.
[14]邱钰婷.旧水泥路面碎石化加铺半柔性路面结构力学特性分析 [J].福建建设科技,2017 (2):87-91.QIU Yuting.Mechanical characteristics analysis of semi-flexible pavement overlaidon rubblized cement concrete pavement [J].Fujian Construction Science & Technology,2017 (2):87-91.
[15]XU J,KONG C W,XU T.Displacemental and mesomechanical responses of semi-flexible pavement based on discrete element method [J].International Journal of Pavement Research and Technology,2022,15(6):1484 -1497.
[16]LING S L,CHEN Z B,SUN D Q,et al.Optimal design of pouring semi-flexible pavement via laboratory test,numerical research,and field validation [J].Transportation Research Record:Journalof the Transportation Research Board,2022,2676 (11):479-495.
[17]LYU S T,LIU C C,YAO H,et al.Comparisons of synchronous measurement methods on various moduli of asphalt mixtures [J].Construction and Building Materials,2018,158:1035 -1045.
[18]程怀磊,孙立军,郑健龙,等.沥青混合料动态压 ‒拉双模量 及 其 在 路 面 响 应 分 析 中 的 应 用 [J].土 木 工 程 学 报,2022,55(3):105-116,128.CHENG Huailei,SUN Lijun,ZHENG Jianlong,et al.Dynamic compressive-tensile moduli of asphalt mixture and its applicationsto pavement response prediction [J].China Civil Engineering Journal,2022,55(3):105-116,128.
[19]潘 勤 学,郑 健 龙.考 虑 拉 压 模 量 不 同 的 沥 青 路 面 力 学 计算方法与分析 [J].土木工程学报,2020,53(1):110-117.PAN Qinxue,ZHENG Jianlong.Mechanical calculation method and analysis of asphalt pavement considering different modulu sintension and compression [J].China Civil Engineering Journal,2020,53(1):110-117.
[20]陈柏丹,孙杰,潘勤学,等.基于拉压差异的沥青混合料强度与疲劳特性 [J].长沙理工大学学报 (自然科学版 ),2024,21(1):50-58,109.CHEN Bodan,SUN Jie,PAN Qinxue,et al.Strength and fatigue characteristics of asphalt mixture based on difference of tensile and compressive properties [J].Journal of Changsha University of Science & Technology (Natural Science ),2024,21(1):50-58,109.
[21]李盛,孙煜,余时清,等.基于双模量理论的连续配筋混凝土复合式路面沥青层表损伤分析及 Top-Down 开裂控制[J].土木工程学报,2024,57(4):111-128.LI Sheng,SUN Yu,YU Shiqing,et al.Asphalt surface damage analysis and Top-Down cracking control of continuous reinforced concrete compound pavement based on double modulus theory [J].Journal of Civil Engineering,2024,57(4):111-128.
[22](苏)阿姆巴尔楚米扬.不同模量弹性理论 [M].北京:中国铁道出版社,1986.Амбарцумян С А.Theory of elasticity with different moduli [M].Beijing:China Railway Publishing House,1986.
[23]朱凯轩.半柔性路面材料的细观力学特性与层位优化研究[D].南京:东南大学,2018.ZHU Kaixuan.Study on micromechanical properties and layer optimizationof semi-flexible pavement material [D].Nanjing:Southeast University,2018.
[24]PAN Q X,HU J,ZHENG J L,et al.Poisson ’s ratio testing method and multi-factor influence quantification model of asphalt pavement materials [J].Construction and Building Materials,2024,425:136025.

Share

COinS