Abstract
In tunnel construction,the quantitative evaluation of rock mass integrity heavily relies on information from the exposed face,and there are challenges when drilling data is used for integrity evaluation.To this end,this study introduced a novel method for quantitative evaluation of rock mass integrity during drilling,integrating numerical statistics with machine learning.A substantial dataset of digital drilling data was collected,covering three common types of rock mass integrity:relatively intact,relatively fractured,and fractured.Subsequently,a high-performance random forest model for the classification of rock mass integrity was developed through data preprocessing and hyperparameter optimization.The interpretability of the model ’s predictive results was enhanced using Shapley additive explanations (SHAP ) value theory.Additionally,the instability index and its exponents from the multivariable instability index analysis method were selected and quantified,and the quantitative evaluation model for “interval rock fracture index (IIRFI)” was created.The application of the model in actual tunnel engineering demonstrates an approximate 90% accuracy rate in evaluating the three types of rock mass integrity.The model provides more efficient,accurate,and detailed information on rock mass integrity compared to conventional methods.The study offers a new and effective quantitative approach for assessing rock mass integrity in tunnels,which contributes to improved construction safety and project efficiency.
Publication Date
12-24-2025
DOI
10.14048/j.issn.1671-2579.2025.06.028
First Page
245
Last Page
253
Submission Date
December 2025
Recommended Citation
Kunmu, ZHANG; Hao, PENG; Ming, LIANG; Yu, HAN; and Guanxian, SONG
(2025)
"Quantitative Evaluation of Tunnel Rock Mass Integrity Based on MWD Technology,"
Journal of China & Foreign Highway: Vol. 45:
Iss.
6, Article 28.
DOI: 10.14048/j.issn.1671-2579.2025.06.028
Available at:
https://zwgl1980.csust.edu.cn/journal/vol45/iss6/28
Reference
[1]交通运输部.2022年交通运输行业发展统计公报 [J].中国水运,2023 (13):29-33.Ministry of Transport of the People ’s Republic of China.Statistical bulletin on the development of transportation industry in 2022 [J].China Water Transport,2023 (13):29-33.
[2]《中国公路学报 》编辑部.中国交通隧道工程学术研究综述:2022 [J].中国公路学报,2022,35(4):1-40.Editorial Department of China Journal of Highway and Transport.Review on China ’s traffic tunnel engineering research:2022 [J].China Journal of Highway and Transport,2022,35(4):1-40.
[3]刘智,李欣雨,李震,等.基于 Bayes LST M 的公路隧道围岩变形预测方法研究 [J].中外公路,2024,44(1):166-176.LIU Zhi,LI Xinyu,LI Zhen,et al.Prediction method of surrounding rock deformation of highway tunnels based on Bayes LSTM [J].Journal of China and Foreign Highway,2024,44(1):166-176.
[4]柳厚祥,苏恒.基于 VTK的隧道围岩裂隙三维重建方法研究 [J].中外公路,2024,44(6):226-232.LIU Houxiang,SU Heng.3D reconstruction method of tunnel surrounding rock fracture based on VTK [J].Journal of China & Foreign Highway,2024,44(6):226-232.
[5]熊自明,卢浩,王明洋,等.我国大型岩土工程施工安全风险管理研究进展 [J].岩土力学,2018,39(10):3703 -3716.XIONG Ziming,LU Hao,WANG Mingyang,et al.Research progress on safety risk management for large scale geotechnical engineering construction in China [J].Rock and Soil Mechanics,2018,39(10):3703 -3716.
[6]纪亚英,张少军,吴建,等.高寒高海拔地区隧道洞口失稳风险评估方法研究 [J].公路,2023,68(5):412-417.JI Yaying,ZHANG Shaojun,WU Ji an,et al.Research on risk assessment method for tunnel portal instability in alpine and high-altitude regions [J].Highway,2023,68(5):412-417.
[7]李术才,刘斌,孙怀凤,等.隧道施工超前地质预报研究现状及发展趋势 [J].岩石力学与工程学报,2014,33(6):1090 -1113.LI Shucai,LIU Bin,SUN Huaifeng,et al.State of art and trends of advanced geological prediction in tunnel construction [J].Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1090 -1113.
[8]王丰,刘天翔,雷航.山区高速公路深厚古滑坡堆积体复活特征机制及防治对策研究 [J].中外公路,2021,41(4):15-20.WANG Feng,LIU Tianxiang,LEI Hang.Reactivation characteristics,mechanisms,and prevention measures for deep ancient landslide deposits along a mountainous expressway [J].Journal of China & Foreign Highway,2021,41(4):15-20.
[9]HE M M,LI N,ZHANG Z Q,et al.An empirical method for determining the mechanical properties of jointed rock mass using drilling energy [J].International Journal of Rock Mechanics and Mining Sciences,2019,116:64-74.
[10]岳中琦.钻孔过程监测 (DPM )对工程岩体质量评价方法的完善与提升 [J].岩石力学与工程学报,2014,33(10):1977 -1996.YUE Zhongqi.Drilling process monitoring for refining and upgrading rock mass quality classification methods [J].Chinese Journal of Rock Mechanics and Engineering,2014,33(10):1977 -1996.
[11]曹瑞琅,王玉杰,赵宇飞,等.基于钻进过程指数定量评价岩体完整性原位试验研究 [J].岩土工程学报,2021,43(4):679-687.CAO Ruilang,WANG Yujie,ZHAO Yufei,et al.In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index [J].Chinese Journal of Geotechnical Engineering,2021,43(4):679-687.
[12]房昱纬,吴振君,盛谦,等.基于超前钻探测试的隧道地层智能识别方法 [J].岩土力学,2020,41(7):2494 -2503.FANG Yuwei,WU Zhenjun,SHENG Qian,et al.Intelligent recognition of tunnel stratum based on advanced drilling tests [J].Rock and Soil Mechanics,2020,41(7):2494 -2503.
[13]刘诗洋,陈祖煜,张云旆,等.基于卷积神经网络对 TBM塌方段的反演分析 [J].固体力学学报,2021,42(3):287-301.LIU Shiyang,CHEN Zuyu,ZHANG Yunpei,et al.Back analysis of the TBM collapse section based on convolutional neural networks [J].Chinese Journal of Solid Mechanics,2021,42(3):287-301.
[14]纪守领,李进锋,杜天宇,等.机器学习模型可解释性方法、应用与安全研究综述 [J].计算机研究与发展,2019,56(10):2071 -2096.JI Shouling,LI Jinfeng,DU Tianyu,et al.Survey on techniques,applications and security of machine learning interpretability [J].Journal of Computer Research and Development,2019,56(10):2071 -2096.
[15]PFISTER P.Recording drilling parameters in ground engineering [J].Ground Engineering,1985,18(3):16-21.
[16]GUI M,SOGA K,BOLTON,M D,et al.Instrumented borehole drilling using ENPASOL system [J].Field Measurements of Geomechanics,1999.
[17]毕鸿基,聂磊,曾超,等.基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价 [J].中国地质灾害与防治学报,2022,33(1):123-131.BI Hongji,NIE Lei,ZENG Chao,et al.Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis [J].The Chinese Journal of Geological Hazard and Control,2022,33(1):123-131.
[18]HAMET P,TREMBLAY J.Artificial intelligence in medicine [J].Metabolism,2017,69:36-40.
[19]何清,李宁,罗文娟,等.大数据下的机器学习算法综述 [J].模式识别与人工智能,2014,27(4):327-336.HE Qing,LI Ning,LUO Wenjuan,et al.A survey of machine learning algorithms for big data [J].Pattern Recognition and Artificial Intelligence,2014,27(4):327-336.
[20]LUNDBERG S,LEE S-I.A unified approach to interpreting model predictions [J].Statistics,2017.
[21]周挺,杨军,詹祥澎,等.一种数据驱动的暂态电压稳定评估方法及其可解释性研究 [J].电网技术,2021,45(11):4416 -4425.ZHOU Ting,YANG Jun,ZHAN Xiangpeng,et al.Data-driven method and interpretability analysis for transient voltage stability assessment [J].Power System Technology,2021,45(11):4416 -4425.
[22]梁铭,彭浩,解威威,等.基于超前钻探及优化集成算法的隧道围岩双层质量评价 [J].隧道建设 (中英文 ),2022,42(8):1443 -1452.LIANG Ming,PENG Hao,XIE Weiwei,et al.Double-layer quality evaluation of surrounding rock of a tunnel based on advance drilling and optimized integration algorithm[J].Tunnel Construction,2022,42(8):1443 -1452.
[23]KUMAR S,CHONG I.Correlation analysis to identify the effective data in machine learning:Prediction of depressive disorder and emotion states [J].International Journal of Environmental Research and Public Health,2018,15(12):2907.
[24]梁杰,陈嘉豪,张雪芹,等.基于独热编码和卷积神经网络的异常检测 [J].清华大学学报 (自然科学版 ),2019,59(7):523-529.LIANG Jie,CHEN Jiahao,ZHANG Xueqin,et al.One-hot encoding and convolutional neural network based anomaly detection [J].Journal of Tsinghua University (Science and Technology ),2019,59(7):523-529.
[25]邓晶,李路.参数优化随机森林在股票预测中的应用 [J].软件,2020,41(1):178-182.DENG Jing,LI Lu.Application of parametric optimization random forests in stock forecasting [J].Computer Engineering & Software,2020,41(1):178-182.
[26]韦建昌,邵羽,梁铭,等.超前水平钻探在岩溶隧道地质预报中的应用研究 [J].中外公路,2020,40(3):220-226.WEI Jianchang,SHAO Yu,LIANG Ming,et al.Application of advance horizontal drilling in geological prediction in Karst tunnels [J].Journal of China & Foreign Highway,2020,40(3):220-226.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons